Search results for "H2"

showing 10 items of 600 documents

Co-development of naive CD4+ cells towards T helper Type 1 or T helper type 2 cells induced by a combination of IL.-12 and IL-4

1997

Abstract Cytokines were found to play a key role in Th cell differentiation. Among them IL-12 was shown to be a potent differentiation factor for Th1 cells, whereas IL-4 is the only known cytokine that promotes the development of Th2 cells. Upon addition of comparable amounts of IL-4 and IL-12 to a primary culture of naive CD4 + T cells activated by immobilized anti-CD3 mAb, it was found that the Th1-inducing capacity of IL-12 is dominated by the Th2-promoting effect of IL-4. However, high amounts of IL-12 (10,000 U/ml) in combination with low amounts of IL-4 (100 U/ml) led to the development of a Th cell population that, upon rechallenge, showed a substantial secondary IFN-γ (Th1 cytokine)…

CD4-Positive T-LymphocytesMaleCellular differentiationmedicine.medical_treatmentImmunologyInterferon-gammaMiceInterleukin 21Th2 CellsmedicineAnimalsImmunology and AllergyCytotoxic T cellIL-2 receptorCells CulturedInterleukin 4Mice Inbred BALB CCD40biologyCell DifferentiationHematologyTh1 CellsInterleukin-12Molecular biologyDrug CombinationsCytokineMice Inbred DBAImmunologyMice Inbred CBAInterleukin 12biology.proteinFemaleInterleukin-4Immunobiology
researchProduct

Physical Fundamentals of Biomaterials Surface Electrical Functionalization

2020

This article is focusing on electrical functionalization of biomaterial&rsquo

Materials scienceBiocompatibilitySurface finishElectric chargelcsh:TechnologyArticleoxygen vacanciesSurface roughnesssurfacepoint defectsGeneral Materials ScienceWork functionSurface chargelcsh:Microscopylcsh:QC120-168.85roughnesslcsh:QH201-278.5business.industrylcsh:Thydroxyapatiteelectrical chargeSemiconductorChemical engineeringlcsh:TA1-2040Surface modificationfunctionalizationlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971biomaterialsMaterials
researchProduct

Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis.

2010

Hajdu-Cheney syndrome is a rare autosomal dominant skeletal disorder with facial anomalies, osteoporosis and acro-osteolysis. We sequenced the exomes of six unrelated individuals with this syndrome and identified heterozygous nonsense and frameshift mutations in NOTCH2 in five of them. All mutations cluster to the last coding exon of the gene, suggesting that the mutant mRNA products escape nonsense-mediated decay and that the resulting truncated NOTCH2 proteins act in a gain-of-function manner.

AdultMaleHeterozygoteHajdu–Cheney syndromeAdolescentmedia_common.quotation_subjectNonsenseMolecular Sequence DataBiologymedicine.disease_causeHajdu-Cheney SyndromeFrameshift mutationExonYoung AdultRare DiseasesSkeletal disorderGeneticsmedicineHumansAmino Acid SequenceReceptor Notch2Frameshift MutationGeneExome sequencingmedia_commonGeneticsMutationBase SequenceDNAExonsMiddle Agedmedicine.diseasePedigreeCodon NonsenseChild PreschoolMutationFemaleSignal TransductionNature genetics
researchProduct

Fasciola hepatica reinfection potentiates a mixed Th1/Th2/Th17/Treg response and correlates with the clinical phenotypes of anemia.

2016

Background: Fascioliasis is a severe zoonotic disease of worldwide extension caused by liver flukes. In human fascioliasis hyperendemic areas, reinfection and chronicity are the norm and anemia is the main sign. Herein, the profile of the Th1/Th2/Th17/Treg expression levels is analyzed after reinfection, correlating them with their corresponding hematological biomarkers of morbidity. Methodology/Principal findings: The experimental design reproduces the usual reinfection/chronicity conditions in human fascioliasis endemic areas and included Fasciola hepatica primo-infected Wistar rats (PI) and rats reinfected at 8 weeks (R8), and at 12 weeks (R12), and negative control rats. In a cross-sect…

0301 basic medicineMalePhysiologymedicine.medical_treatmentSnailslcsh:MedicineGene ExpressionImmune PhysiologyGene expressionMedicine and Health Scienceslcsh:ScienceImmune ResponseInnate Immune SystemMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionFOXP3hemic and immune systemsImmunosuppressionEBI3AnemiaForkhead Transcription FactorsHematologyThymusInterleukin-10Interleukin 10medicine.anatomical_structureHelminth InfectionsCytokinesResearch ArticleNeglected Tropical DiseasesFascioliasisImmunologychemical and pharmacologic phenomenaSpleenBiologyTransforming Growth Factor beta103 medical and health sciencesImmune systemTh2 CellsGeneticsParasitic DiseasesmedicineFasciola hepaticaAnimalsRats WistarCell ProliferationInterleukinslcsh:RBiology and Life SciencesMolecular DevelopmentFasciola hepaticaTh1 CellsTropical Diseasesbiology.organism_classificationRats030104 developmental biologyCross-Sectional StudiesImmune SystemImmunologyTh17 Cellslcsh:QSpleenDevelopmental Biology
researchProduct

Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor

2017

In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy.

tunnel magnetoresistance; current sensor; energy meter; power measurement; wattmeter; internet-of-thingsEngineeringMagnetoresistancepower measurementPower factorlcsh:Technology01 natural sciencesArticlelaw.inventionElectricity meterlaw0103 physical sciencescurrent sensorinternet-of-thingsGeneral Materials ScienceCurrent sensorlcsh:Microscopylcsh:QC120-168.85wattmeter010302 applied physicslcsh:QH201-278.5lcsh:Tbusiness.industrytunnel magnetoresistance010401 analytical chemistryElectrical engineeringWattmeterAC powerenergy meterLine (electrical engineering)0104 chemical sciencesTunnel magnetoresistancelcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)businesslcsh:TK1-9971Materials; Volume 10; Issue 10; Pages: 1134
researchProduct

Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations

2016

Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interes…

0301 basic medicineIronSaccharomyces cerevisiaeGene ExpressionVacuoleSaccharomyces cerevisiaeBiologymedicine.disease_causeApplied Microbiology and Biotechnology03 medical and health sciencesOrganellemedicineCloning MolecularPlant ProteinsFerritin030102 biochemistry & molecular biologyEcologyIron deficiencyfood and beveragesMetabolismIron deficiencybiology.organism_classificationmedicine.diseaseIron metabolismRecombinant ProteinsYeastYeastFerritinSFerH2SFerH1030104 developmental biologyBiochemistryFerritinsbiology.proteinSoybeansOxidative stressFood ScienceBiotechnology
researchProduct

P/CAF-mediated spermidine acetylation regulates histone acetyltransferase activity

2016

Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes. Previous studies report the interplay between polyamines metabolism and levels of histone acetylation, but the molecular basis of this effect is still unclear. In this work, we have analyzed the in vitro effect of spermidine on histone H3 acetylation catalyzed by P/CAF, a highly co…

0301 basic medicineSpermidine acetylationSpermidineSAP30BiologyHistones03 medical and health sciences0302 clinical medicineHistone H1Drug DiscoveryHistone H2AAnimalsHistone acetyltransferase activityp300-CBP Transcription FactorsHistone octamerHistone H3 acetylationHistone AcetyltransferasesPolytene ChromosomesPharmacologyAcetylationGeneral MedicineHistone acetyltransferaseEnzyme ActivationKineticsDrosophila melanogaster030104 developmental biologyBiochemistry030220 oncology & carcinogenesisbiology.proteinJournal of Enzyme Inhibition and Medicinal Chemistry
researchProduct

EZH2 mutations are frequent and represent an early event in follicular lymphoma

2013

Gain of function mutations in the H3K27 methyltransferase EZH2 represent a promising therapeutic target in germinal center lymphomas. In this study, we assessed the frequency and distribution of EZH2 mutations in a large cohort of patients with follicular lymphoma (FL) (n = 366) and performed a longitudinal analysis of mutation during the disease progression from FL to transformed FL (tFL) (n = 33). Mutations were detected at 3 recurrent mutation hot spots (Y646, A682, and A692) in 27% of FL cases with variant allele frequencies (VAF) ranging from 2% to 61%. By comparing VAF of EZH2 with other mutation targets (CREBBP, MLL2, TNFRSF14, and MEF2B), we were able to distinguish patients harbori…

endocrine systemTime FactorsMethyltransferasemedicine.medical_treatmentDNA Mutational AnalysisImmunologyFollicular lymphomaKaplan-Meier Estimatemacromolecular substancesBiologymedicine.disease_causeBiochemistryTargeted therapyCohort StudiesGene Frequencyhemic and lymphatic diseasesBiomarkers TumormedicineHumansEnhancer of Zeste Homolog 2 ProteinLymphoma FollicularAllele frequencyMutationLymphoid NeoplasiaMEF2 Transcription FactorsGene Expression ProfilingEZH2Polycomb Repressive Complex 2Germinal centerCell BiologyHematologymedicine.diseaseCREB-Binding ProteinLymphomaMutationDisease ProgressionCancer researchReceptors Tumor Necrosis Factor Member 14Blood
researchProduct

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…

2017

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany
researchProduct

Photocatalytic and photoelectrocatalytic H2 evolution combined with valuable furfural production

2023

In this work the photocatalytic (PC) and photoelectrocatalytic (PEC) reforming of furfuryl alcohol (FA) under environmental friendly conditions was investigated. Both H2 evolution and partial oxidation to furfuraldehyde were followed. For the first time TiO2 based photocatalysts were studied and the photocatalytic activity of home prepared photocatalysts was compared with that of commercial ones under both UVA and simulated solar irradiation. PEC tests were performed by using home prepared TiO2 nanotubes (TiO2 NTs) as photoanode and Pt free Ni foam as cathode to improve the Hydrogen Evolution Reaction (HER). Both the partial FA oxidation reaction rate and H2 evolution rate were normalized f…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/23 - Chimica Fisica ApplicataFurfuryl alcohol partial oxidationProcess Chemistry and TechnologyTiO2PhotoelectrocatalysisSettore CHIM/07 - Fondamenti Chimici Delle TecnologieH2 productionPhotocatalysisbrookiteCatalysisPt free cathodeApplied Catalysis A: General
researchProduct