Search results for "H30"

showing 10 items of 1587 documents

Editorial for Special Issue “Bioactive Oxadiazoles”

2021

Oxadiazoles are electron-poor, five-membered aromatic heterocycles containing one oxygen and two nitrogen atoms [...]

0301 basic medicineAnti-Inflammatory AgentsCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineIsomerismCoordination ComplexesOrganic chemistryCyclooxygenase InhibitorsPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyOxadiazolesChemistryOrganic ChemistryGeneral MedicineComputer Science ApplicationsEditorialn/a030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisIntroductory Journal ArticleInternational Journal of Molecular Sciences
researchProduct

Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma

2020

Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of …

0301 basic medicineAntineoplastic AgentsReviewexosomesExtracellular vesiclesCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesdrug delivery systems0302 clinical medicinemedicineHumansexosomedrug delivery systemmalignant pleural mesotheliomaMesotheliomaPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyDrug Carriersbusiness.industryPleural mesotheliomaMesothelioma MalignantOrganic ChemistryGeneral Medicinemedicine.diseaseMicrovesiclesComputer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisDrug deliveryCancer researchDelivery systemextracellular vesiclebusinessextracellular vesicles
researchProduct

Potential Health Benefits of Olive Oil and Plant Polyphenols

2018

Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species…

0301 basic medicineAntioxidantAnticancer therapy; Hydroxytyrosol; Olea europea; Oleuropein; Olive oil; Polyphenols; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistrymedicine.medical_treatmentPhytochemicalsReviewAntioxidantsCatalysilcsh:Chemistrychemistry.chemical_compoundFood sciencelcsh:QH301-705.5Spectroscopyfood and beveragesComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral Medicineolive oilComputer Science Applicationsvisual_artvisual_art.visual_art_mediumBarkhydroxytyrosolPolyphenolContext (language use)Dark chocolateBiologyCatalysisInorganic Chemistry03 medical and health sciencesfoodOleuropeinOleamedicineAnimalsHumansanticancer therapyPhysical and Theoretical ChemistryMolecular BiologyWinePlant ExtractsOlea europeaOrganic ChemistryPolyphenolsAntineoplastic Agents Phytogenicfood.foodPlant Leaves030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistryPolyphenololeuropeinHydroxytyrosolInternational Journal of Molecular Sciences
researchProduct

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry ye…

2018

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY) production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidat…

0301 basic medicineAntioxidantEstrès oxidatiumedicine.medical_treatmentGlutathione reductasenon-Saccharomyces yeastsProtein oxidationBiochemistry Genetics and Molecular Biology (miscellaneous)MicrobiologyApplied Microbiology and BiotechnologySaccharomyces03 medical and health scienceschemistry.chemical_compoundFood-grade argan oilVirologyOxidative damageGeneticsmedicineFood sciencelcsh:QH301-705.5Molecular BiologyActive dry wine yeastsantioxidant defensebiologyfood and beveragesCell BiologyGlutathionebiology.organism_classificationTrehaloseYeast030104 developmental biologylcsh:Biology (General)chemistryViniculturaParasitologyFermentationAntioxidant defencesMicrobial Cell
researchProduct

Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects

2017

Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and re…

0301 basic medicineAntioxidantRedox signalingmedicine.medical_treatmentCellular differentiationClinical BiochemistryReview Article030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeBiochemistrychemistry.chemical_compound0302 clinical medicineGene Regulatory Networks610 Medicine & healthlcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920Anticholesteremic AgentsReactive Nitrogen Speciesmedicine.symptomlcsh:Medicine (General)Oxidation-ReductionPeroxynitriteSignal Transductionmedicine.medical_specialtyCell signalingAntioxidant therapy610 Medicine & healthNitric oxide03 medical and health sciencesPeripheral Arterial DiseasemedicineHumansExerciseReactive oxygen speciesbusiness.industryOrganic ChemistryClaudication and critical limb ischemiaWalking distanceIntermittent claudicationSurgeryOxidative Stress030104 developmental biologychemistrylcsh:Biology (General)Peripheral artery (occlusive) diseasebusinessReactive Oxygen SpeciesOxidative stressRedox Biology
researchProduct

Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or nadph oxidase—implicatio…

2020

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-m…

0301 basic medicineAntioxidantmedicine.medical_treatmentReview030204 cardiovascular system & hematologyMitochondrionmedicine.disease_causelcsh:Chemistry0302 clinical medicineEndothelial dysfunctionEndothelial dysfunctionlcsh:QH301-705.5SpectroscopyNADPH oxidasebiologyChemistryGeneral MedicineReactive Nitrogen SpeciesComputer Science ApplicationsCell biologyMitochondriaCardiovascular DiseasesDisease Progressionmedicine.symptomInflammationENOS uncouplingOxidative phosphorylationEndothelial dysfunction; ENOS uncoupling; Kindling radicals; Low-grade inflammation; Mitochondria; NADPH oxidase; Oxidative stress; Redox cross talkLow-grade inflammationCatalysisRedox cross talkInorganic Chemistry03 medical and health sciencesmedicineDiabetes MellitusAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyInflammationNADPH oxidaseOrganic ChemistryNADPH Oxidasesmedicine.diseaseAngiotensin II030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Oxidative stressbiology.proteinKindling radicalsReactive Oxygen SpeciesOxidative stress
researchProduct

Effect of cadmium on anion exchange capability through Band 3 protein in human erythrocytes

2018

The efficiency of transport through Band 3 protein, mediating HCO3–/Cl– exchange across erythrocytes membrane, is reduced by oxidative stress. The aim of the present study was to verify whether Band 3 protein transport efficiency is compromised by treatment with Cadmium (Cd2+), an extremely toxic heavy metal known to interfere with antioxidant enzymes, energy metabolism, gene expression and cell membranes. To this end, the rate constant for SO4= uptake through Band 3 protein (accounting for velocity of anion exchange) was measured along with membrane –SH groups, Malonyldialdehyde (MDA) and Band 3 protein expression levels in Cd2+-treated human erythrocytes (300 μM, 1 mM). Our results show t…

0301 basic medicineAntioxidantmedicine.medical_treatmentchemistry.chemical_elementErythrocyte.Plant Sciencemedicine.disease_causeSettore BIO/09 - FisiologiaGeneral Biochemistry Genetics and Molecular BiologyBand 3 proteinMetal03 medical and health sciencesGene expressionmedicineSettore MED/49 - Scienze Tecniche Dietetiche ApplicateBand 3lcsh:QH301-705.5chemistry.chemical_classificationCadmiumbiologyBiochemistry (medical)Erythrocyte030104 developmental biologyMembraneEnzymechemistrylcsh:Biology (General)Oxidative stressvisual_artbiology.proteinBiophysicsvisual_art.visual_art_mediumSO4= uptakeOxidative streCadmium Oxidative stress SO4= uptake Band 3 protein ErythrocyteOxidative stressCadmiumJournal of Biological Research
researchProduct

Active biopackaging produced from by‐products and waste from food and marine industries

2021

The agro‐food industry cannot today do without packaging to preserve and above all market its products. Plastic materials coming mainly from petrochemicals have taken a predominant place in the food packaging sector. They have become indispensable in many sectors, from fresh to frozen products, from meat and dairy products to fruit and vegetables or almost‐ready meals. Plastics are cheap, their lightness reduces transport costs, and their convenience is fundamental for out‐of‐home catering. However, plastics pose serious end‐of‐life issues. The development of materials that are more respectful of the consumer and the environment has become a major issue. In addition, the agro‐food industrie…

0301 basic medicineAquatic OrganismsPlastic materialsActive packagingIndustrial WasteBiocompatible Materialsagro‐food by‐product valorizationbiopolymersReview ArticleShelf life7. Clean energyGeneral Biochemistry Genetics and Molecular Biology12. Responsible consumption03 medical and health sciences0302 clinical medicine[SDV.IDA]Life Sciences [q-bio]/Food engineeringantimicrobial and antioxidantProduct PackagingFood IndustryHumansRecyclingReview Articleslcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hungerWaste managementsustainabilitybioactive filmsFood packaging030104 developmental biologyPetrochemicallcsh:Biology (General)13. Climate action030220 oncology & carcinogenesisSustainabilityBusinessPlasticsfood packagingBiotechnologyFEBS Open Bio
researchProduct

Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP

2020

Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes&rsquo

0301 basic medicineAquatic OrganismsProgrammed cell deathCell SurvivalSurvivinDown-RegulationSecondary MetabolismX-Linked Inhibitor of Apoptosis ProteinTRAILJurkat cellsArticleTNF-Related Apoptosis-Inducing LigandJurkat Cells03 medical and health sciences0302 clinical medicinemarine actinomycetesDownregulation and upregulationDrug DiscoveryOxazinesSurvivinHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyFADDBenzopyreneslcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSCaspase 8therapybiologyChemistryProdigiosinQuinonesapoptosisGeneral MedicineHCT116 Cells3. Good healthXIAPActinobacteria030104 developmental biologylcsh:Biology (General)Drug Resistance NeoplasmApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchGene DeletionCells
researchProduct

Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish

2017

Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular cal…

0301 basic medicineAquatic OrganismsQH301-705.5ScienceMorphogenesisZoologycraniofacial abnormalitiesGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencescardiac abnormalitiesAdverse Outcome PathwayMorphogenesisAnimalsWater PollutantsBiology (General)crude oilEcologyGeneral Immunology and MicrobiologybiologyEcologyGeneral NeuroscienceGadiformesQRGeneral MedicineHaddockbiology.organism_classificationPhenotypeGadiformesPetroleum030104 developmental biologychemical geneticsGenomics and Evolutionary BiologyMedicineOtherChemical geneticsAtlantic haddocktranscriptomeHomeostasisResearch Article
researchProduct