Search results for "HILIC"

showing 10 items of 745 documents

Chemical composition of lipophilic extractives from grey alder (Alnus incana)

2013

The chemical composition of the lipophilic extractives in the hexane extracts from grey alder bark, knotwood, and cones has been investigated by gas chromatography and gas chromatography-mass spectrometry. The efficiency of two extraction methods was compared. The highest amount of lipophilic extractives (about 9% of o.d. material) was observed in grey alder cone, while the lowest (about 3%) was found in knotwood. The three different morphological parts of alder showed significant differences not only in the content but also in composition of extractives, namely fatty acids, triglycerides, and triterpenes. The main identified compounds were triterpenoids (lupen-3-one, lupeol, betulone, betu…

Environmental EngineeringLinoleic acidKnotwoodlcsh:BiotechnologyBioengineeringAlderGrey alderTerpeneBarkchemistry.chemical_compoundBetulinic acidlcsh:TP248.13-248.65Organic chemistryWaste Management and DisposalChemical compositionLupeolLipophilic extractivesAlnus incanaChromatographybiologyChemistrybiology.organism_classificationvisual_artConesvisual_art.visual_art_mediumBarkLupane triterpenoids
researchProduct

Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal

2021

International audience; Heavy metal removal from water resources is essential for environmental protection and the production of safe drinking water. In this direction, Zinc doped Aluminium Oxide (Zn:Al2O3) nanoparticles were incorporated into Polysulfone (PSf) to prepare mixed matrix membranes for the efficient removal of heavy metals from water. These Zn:Al2O3 nanoparticles prepared by the solution combustion method have a very high surface area (261.44 m2/g) with an approximate size of 50 nm. X-ray Photoelectron Spectroscopy analysis showed that the Al and Zn were in +3 and + 2 oxidation states, respectively. Cross-sectional Scanning Electron Microscopy images revealed the finger-like mo…

Environmental EngineeringMaterials sciencePolymersAnti-fouling studyHealth Toxicology and Mutagenesis0208 environmental biotechnologyNanoparticlechemistry.chemical_element02 engineering and technologyZinc010501 environmental sciences01 natural sciencesMetalchemistry.chemical_compoundMixed matrix membranesMetals HeavyAluminum OxideEnvironmental Chemistry[CHIM]Chemical SciencesSulfonesSurface chargePolysulfonePorosityHydrophilicity0105 earth and related environmental sciencesPublic Health Environmental and Occupational HealthMembranes ArtificialGeneral MedicineGeneral ChemistryPollution6. Clean water020801 environmental engineeringZincCross-Sectional StudiesMembraneChemical engineeringchemistry13. Climate actionHeavy metal ionsvisual_artvisual_art.visual_art_mediumAluminium oxide
researchProduct

Mandibulary Eosinophilic Granuloma: Case Series

2008

Eosinophilic granuloma is a proliferation of Langerhans cells in the bones that most commonly involving the skeletal system. The disease generally affects children or young adults with predominance in males and it is characterized by a single or multiple skeletal lesions. This study describes a few cases of mandibular Eosinophilic Granuloma and the effects of surgical curettage of lesions

Eosinophilic granulomaGranulomaLangerhans cells
researchProduct

Phospholipid-polyaspartamide micelles for pulmonary delivery of corticosteroids

2011

A novel drug delivery system for beclomethasone dipropionate (BDP) has been constructed through self-assembly of a pegylated phospholipid-polyaminoacid conjugate. This copolymer was obtained by chemical reaction of α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)2000] (DSPE-PEG(2000)-NH(2)). Benefiting from the amphiphilic structure with the hydrophilic shell based on both PHEA and PEG and many hydrophobic stearoyl tails, PHEA-PEG(2000)-DSPE copolymer was able to self assemble into micelles in aqueous media above a concentration of 1.23 × 10(-7)M, determined by fluorescence studies. During the self-assembling …

ErythrocytesBiocompatibilityCell SurvivalDrug CompoundingDrug StorageALPHABETA-Poly(N-2-hydroxyethyl)-dl- aspartamide (PHEA) 12-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)2000](DSPE-PEG2000-NH2) Polymeric micelles Drug delivery Beclomethasone dipropionate (BDP) Pulmonary diseasesPhospholipidPharmaceutical Science[object Object]HemolysisMicelleCell LinePolyethylene Glycolschemistry.chemical_compoundDrug StabilityAmphiphilePEG ratioPulmonary diseasesHumans?Beclomethasone dipropionate (BDP)Particle SizeLungMicellesDrug CarriersChromatographyAqueous solutionMolecular StructureChemistryPhosphatidylethanolaminesBeclomethasonetechnology industry and agriculture?-Poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA)Spectrometry FluorescenceSolubilitySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDrug deliveryDrug deliveryPolymeric micellesNanocarriersPeptidesHydrophobic and Hydrophilic InteractionsNuclear chemistry
researchProduct

From an epoxide monomer toolkit to functional PEG copolymers with adjustable LCST behavior.

2011

The lower critical solution temperature (LCST) behavior of novel poly(ethylene glycol) (PEG)-based copolymers bearing multiple functional groups, obtained by anionic ring-opening (co)polymerization (AROP), has been investigated. Variable comonomer ratios of ethylene oxide (EO) and the corresponding oxiranes isopropylidene glyceryl glycidyl ether (IGG), ethoxyl vinyl glycidyl ether (EVGE), allyl glycidyl ether (AGE), or N,N-dibenzyl amino glycidyl (DBAG), particularly designed to implement functional groups at the PEG backbone, were found to influence the LCST behavior. Sharp transitions from translucent to opaque solutions, comparable to other well-established stimuli-responsive polymers, w…

Ethylene OxideMaterials scienceHot TemperaturePolymers and PlasticsPolymersAllyl glycidyl etherpolyethersEpoxideLower critical solution temperaturePolymerizationPolyethylene Glycolschemistry.chemical_compoundPolymer chemistrycopolymersMaterials ChemistryCopolymerPoly(Ethylene Glycol) CopolymersSide-ChainsAqueous-SolutionEthylene oxideComonomerstimuli-sensitiveOrganic ChemistryPegchemistryPolymerizationGlycidolLcstEthylene glycolHydrophobic and Hydrophilic InteractionsMacromolecular rapid communications
researchProduct

Long-Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers.

2020

Long-chain epoxides and specifically alkyl glycidyl ethers represent a class of highly hydrophobic monomers for anionic ring-opening polymerization (AROP), resulting in apolar aliphatic polyethers. In contrast, poly(ethylene glycol) is known for its high solubility in water. The combination of hydrophobic and hydrophilic monomers in block and statistical copolymerization reactions enables the synthesis of amphiphilic polyethers for a wide range of purposes, utilizing micellar interactions in aqueous solutions, e.g., viscosity enhancement of aqueous solutions, formation of supramolecular hydrogels, or for polymeric surfactants. Controlled polymerization of these highly hydrophobic long-chain…

Ethylene OxidePolymers and PlasticsPolymersEpoxide02 engineering and technologyPoloxamer010402 general chemistry01 natural sciencesPolymerizationchemistry.chemical_compoundSurface-Active AgentsAmphiphileMaterials ChemistryCopolymerAlkylMicelleschemistry.chemical_classificationEthylene oxideChemistryOrganic Chemistrytechnology industry and agriculture021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesMonomerPolymerizationEpoxy Compounds0210 nano-technologyEthylene glycolHydrophobic and Hydrophilic InteractionsMacromolecular rapid communications
researchProduct

Glycidyl Tosylate: Polymerization of a “Non‐Polymerizable” Monomer permits Universal Post‐Functionalization of Polyethers

2019

Abstract Glycidyl tosylate appears to be a non‐polymerizable epoxide when nucleophilic initiators are used because of the excellent leaving group properties of the tosylate. However, using the monomer‐activated mechanism, this unusual monomer can be copolymerized with ethylene oxide (EO) and propylene oxide (PO), respectively, yielding copolymers with 7–25 % incorporated tosylate‐moieties. The microstructure of the copolymers was investigated via in situ 1H NMR spectroscopy, and the reactivity ratios of the copolymerizations have been determined. Quantitative nucleophilic substitution of the tosylate‐moiety is demonstrated for several examples. This new structure provides access to a librar…

Ethylene oxidering-opening polymerization010405 organic chemistryCommunicationLeaving groupEpoxideGeneral Chemistry010402 general chemistry01 natural sciencesRing-opening polymerizationCommunicationsCatalysis0104 chemical scienceschemistry.chemical_compoundMonomerchemistryPolymerizationpolyetherPolymer chemistryCopolymerNucleophilic substitutionRing‐Opening Polymerizationfunctionalizationpoly(ethylene oxide)poly(propylene oxide)Angewandte Chemie International Edition
researchProduct

Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation

1990

Polymethoxylated flavones and C-glycosyl derivatives isolated from medicinal plants besides other flavonoid compounds were studied for their influence on lipid peroxidation induced by FeSO4+ cysteine in rat liver microsomes. A number of hydroxyflavones (e.g. luteolin); C-glycosyl-flavones (e.g. orientin); methoxyflavones (e.g. gardenin D) and flavonols (e.g. datiscetin), as well as the flavanol leucocyanidol and the biflavone amentoflavone behaved as inhibitors of non-enzymic lipid peroxidation. Structure-activity relationships were established and it was observed that the structural features for active polyhydroxylated compounds were different from those of polymethoxylated flavones, antip…

FlavonoidsPharmacologychemistry.chemical_classificationOrientinFlavonoidAmentoflavoneBiologyBiochemistryFlavonesRatscarbohydrates (lipids)Lipid peroxidationStructure-Activity Relationshipchemistry.chemical_compoundFlavonolschemistryBiochemistryLipophilicityMicrosomes LiverAnimalsLipid PeroxidationLuteolinBiochemical Pharmacology
researchProduct

A micellar multitasking device: sensing pH windows and gauging the lipophilicity of drugs with fluorescent signals.

2010

A multitasking fluorescent device can be obtained by forming micelles of Triton X-100, containing a lipophilic macrocyclic Cu(2+) complex and the coordinating fluorophore Coumarin 343 (C343), which features a COOH moiety. At low pH the two micellised components do not interact, and the fluorescence of Courmarin 343 (C343) is intense. At intermediate pH, C343 is deprotonated and coordinates to the Cu(2+) centre in its apical position, with fluorescence quenching. At higher pH the deprotonated C343 is displaced from Cu(2+) by the formation of an OH(-) complex, and the fluorescence is revived. This allows the system to carry out its first task as it behaves as an "on-off-on" fluorescent sensor…

FluorophoreStereochemistryOctoxynolKineticsself-assembled devices010402 general chemistry01 natural sciencesMicelleCatalysisFluorescencechemistry.chemical_compoundfluorescent probesCoumarins[ CHIM.OTHE ] Chemical Sciences/OtherlipophilicityMoietyCarboxylateComputingMilieux_MISCELLANEOUSMicelles010405 organic chemistryChemistryOrganic ChemistryAnti-Inflammatory Agents Non-SteroidalAnticoagulantsWaterGeneral ChemistryHydrogen-Ion ConcentrationFluorescence0104 chemical sciencesPartition coefficientCrystallographyKineticsSpectrometry FluorescencepH windowsLipophilicity[CHIM.OTHE]Chemical Sciences/OtherChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and re…

2011

A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is,…

FluorophoreTertiary aminePolymersPyridinesInorganic chemistryPhotochemistryMicelleCatalysisPolystyrene sulfonatechemistry.chemical_compoundAmphiphileAminesAlkylMicellesFluorescent Dyeschemistry.chemical_classificationPyrenesfluorescence micelles polymerization potentiometry sensorsOrganic ChemistryMolecular sensorGeneral ChemistryHydrogen-Ion ConcentrationPolyelectrolyteKineticschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoHydrophobic and Hydrophilic InteractionsChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct