Search results for "HSP70"
showing 10 items of 206 documents
Heat Shock Proteins: Cell Protection through Protein Triage
2010
Heat shock proteins (HSPs) are chaperones that catalyze the proper folding of nascent proteins and the refolding of denatured proteins. The ubiquitin-proteasome system is an error-checking system that directs improperly folded proteins for destruction. A coordinated interaction between the HSPs (renaturation) and the proteasome (degradation) must exist to assure protein quality control mechanisms. Although it still remains unknown how the decision of folding vs. degradation is taken, many pieces of evidence demonstrate that HSPs interact directly or indirectly with the proteasome, assuring quite selectively the proteasomal degradation of certain proteins under stress conditions. In this rev…
Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational…
2003
The large L envelope protein of the hepatitis B virus utilizes a new folding pathway to acquire a dual transmembrane topology in the endoplasmic reticulum (ER). The process involves cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain into the ER. Here, we demonstrate that the conformational and functional heterogeneity of L depends on the action of molecular chaperones. Using coimmunoprecipitation, we observed specific interactions between L and the cytosolic Hsc70, in conjunction with Hsp40, and between L and the ER-resident BiP in mammalian cells. Complex formation between L and Hsc70 was abolished when preS translocation was artifici…
BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins.
2010
Increasing evidence indicates the existence of selective autophagy pathways, but the manner in which substrates are recognized and targeted to the autophagy system is poorly understood. One strategy is transport of a particular substrate to the aggresome, a perinuclear compartment with high autophagic activity. In this paper, we identify a new cellular pathway that uses the specificity of heat-shock protein 70 (Hsp70) to misfolded proteins as the basis for aggresome-targeting and autophagic degradation. This pathway is regulated by the stress-induced co-chaperone Bcl-2-associated athanogene 3 (BAG3), which interacts with the microtubule-motor dynein and selectively directs Hsp70 substrates …
Complementation of Saccharomyces cerevisiae mutationsin genes involved in translation and protein folding (EFB1 and SSB1)with Candida albicans cloned…
2000
We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albic…
Targeting heat shock proteins in cancer
2010
Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are powerful chaperones. Their expression is induced in response to a wide variety of physiological and environmental insults including anti-cancer chemotherapy, thus allowing the cell to survive to lethal conditions. Different functions of HSPs have been described to account for their cytoprotective function, including their role as molecular chaperones as they play a central role in the correct folding of misfolded proteins, but also their anti-apoptotic properties. HSPs are often overexpressed in cancer cells and this constitutive expression is necessary for cancer cells' survival. HSPs may have oncogene-like functions and likewise mediat…
Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity
2009
Heat shock protein 27 (HSP27) accumulates in stressed cells and helps them to survive adverse conditions. We have already shown that HSP27 has a function in the ubiquitination process that is modulated by its oligomerization/phosphorylation status. Here, we show that HSP27 is also involved in protein sumoylation, a ubiquitination-related process. HSP27 increases the number of cell proteins modified by small ubiquitin-like modifier (SUMO)-2/3 but this effect shows some selectivity as it neither affects all proteins nor concerns SUMO-1. Moreover, no such alteration in SUMO-2/3 conjugation is achievable by another HSP, such as HSP70. Heat shock factor 1 (HSF1), a transcription factor responsib…
Identification of proteins in excretory/secretory extracts of Echinostoma friedi (Trematoda) from chronic and acute infections.
2006
In the present study, we describe the investigation of Echinostoma friedi excretory/secretory products using a proteomic approach combined with the use of heterologous antibodies. We have identified 18 protein spots corresponding to ten proteins, including cytoskeletal proteins like actin, tropomyosin, and paramyosin; glycolytic enzymes like enolase, glyceraldehyde 3P dehydrogenase, and aldolase; detoxifying enzymes like GSTs; and stress proteins like heat shock protein (Hsp) 70. Among these proteins, both actin and, to a lesser extent, Hsp70, exhibited differential expression patterns between chronic and acute infections in the Echinostoma-rodent model, suggesting that these proteins may p…
Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism.
2012
The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however, unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane …
Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock.
1999
In the present study, we compared the induction of heat shock proteins (HSPs) by heat and heavy metal ions in three different endothelial cell types, namely, human umbilical vein endothelial cells, human pulmonary microvascular endothelial cells, and the cell line EA.hy 926. Our results show that especially Zn2+and Cd2+are inducers of 70-kDa (HSP70), 60-kDa (HSP60), 32-kDa (HSP32), and 27-kDa (HSP27) HSPs. The strength of inducibility is specific for each HSP. Ni2+and Co2+only show an inducible effect at very high concentrations, that is, in the clearly cytotoxic range. Furthermore, we investigated the time course of HSP expression and the involvement of heat shock factor-1. Our study demon…
Molecular Chaperones and Thyroid Cancer
2021
Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of t…