Search results for "Hall Effect"
showing 10 items of 702 documents
Electric control of the spin Hall effect by intervalley transitions
2013
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…
Experimental study of low-voltage surge protection device response in realistic systems
2008
Experimental results on low-voltage surge protection under fast pulses in realistic wiring systems are presented. A fast voltage pulse generator is designed to provide fast voltage pulses with short steep fronts. The effective residual voltage of protected equipment is then investigated and compared with simulation results.
The influence of Coulomb interaction screening on the excitons in disordered two-dimensional insulators.
2021
AbstractWe study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degen…
Topology driven g-factor tuning in type-II quantum dots
2017
We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type-II InAs/GaAsxSb1−x quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the exciton g factor, which are modulated by the applied bias. The results are explained in the frame of realistic →k⋅→p and effective Hamiltonian models and could open a venue for new spin quantum memories beyond the InAs/GaAs realm.
Gain, detuning, and radiation patterns of nanoparticle optical antennas
2008
International audience; For their capability to localize and redirect electromagnetic field, metal nanoparticles have been recently viewed as efficient nanoantenna operating in the optical regime. In this article, we experimentally investigated the optical responses of coupled gold antenna pairs and measured the critical parameters defining antenna characteristics: resonant frequencies and bandwidths, detuning and gains, and radiation patterns.
Generation of energy selective excitations in quantum hall edge states
2011
We operate an on-demand source of single electrons in high perpendicular magnetic fields up to 30T, corresponding to a filling factor below 1/3. The device extracts and emits single charges at a tunable energy from and to a two-dimensional electron gas, brought into well defined integer and fractional quantum Hall (QH) states. It can therefore be used for sensitive electrical transport studies, e.g. of excitations and relaxation processes in QH edge states.
Spin Pumping and Torque Statistics in the Quantum Noise Limit
2016
We analyze the statistics of charge and energy currents and spin torque in a metallic nanomagnet coupled to a large magnetic metal via a tunnel contact. We derive a Keldysh action for the tunnel barrier, describing the stochastic currents in the presence of a magnetization precessing with the rate $\Omega$. In contrast to some earlier approaches, we include the geometric phases that affect the counting statistics. We illustrate the use of the action by deriving spintronic fluctuation relations, the quantum limit of pumped current noise, and consider the fluctuations in two specific cases: the situation with a stable precession of magnetization driven by spin transfer torque, and the torque-…
Time-dependent transport in Aharonov–Bohm interferometers
2010
A numerical approach is employed to explain transport characteristics in realistic, quantum Hall based Aharonov-Bohm interferometers. First, the spatial distribution of incompressible strips, and thus the current channels, are obtained applying a self-consistent Thomas-Fermi method to a realistic heterostructure under quantized Hall conditions. Second, the time-dependent Schr\"odinger equation is solved for electrons injected in the current channels. Distinctive Aharonov-Bohm oscillations are found as a function of the magnetic flux. The oscillation amplitude strongly depends on the mutual distance between the transport channels and on their width. At an optimal distance the amplitude and t…
Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks
2017
We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the $\nu=1/2$ fractional quantum Hall effect on the lattice. We address the robustness of the ground state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill,…
Cryogenic nanoelectromechanical switch enabled by Bi2Se3 nanoribbons
2022
Abstract Nanoelectromechanical (NEM) switches are potential candidates for memory and logic devices for low standby-current and harsh environment applications. Cryogenic operation of these devices would allow to use them, e.g., in space probes and in conjunction with quantum computers. Herein, it is demonstrated that cryogenic application requirements such as good flexibility and conductivity are satisfied by using Bi2Se3 nanoribbons as active elements in NEM switches. Experimental proof of principle NEM switching at temperatures as low as 5 K is achieved in volatile and non-volatile reversible regimes, exhibiting distinct ON and OFF states, backed by theoretical modelling. The results open…