Search results for "Hall Effect"

showing 10 items of 702 documents

Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction

2014

We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's mag…

Materials scienceCondensed matter physicsMagnetoresistanceCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsCoupling (probability)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismTunnel junctionCondensed Matter::Superconductivity0103 physical sciencesThermoelectric effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyAnisotropyOrder of magnitudeQuantum tunnelling
researchProduct

Primary thermometry with nanoscale tunnel junctions

1995

We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy kBT and the electrostatic charging energy E c of the islands between the junctions and is completely blocked by Coulomb repulsion at T = 0 and at small voltages eV/2 ≤ Ec. In the opposite limit, kBT ≫ Ec, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T…

Materials scienceCondensed matter physicsMonte Carlo methodConductanceCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAtomic and Molecular Physics and OpticsTunnel effectElectrical resistance and conductanceTunnel junctionThermometerElectrodeGeneral Materials ScienceVoltageJournal of Low Temperature Physics
researchProduct

Structural characterization and anomalous Hall effect of Rh2MnGe thin films

2015

Abstract We present the preparation, structural investigations, and transport properties of L21-ordered epitaxial Rh2MnGe Heusler thin films grown by pulsed laser deposition. The films grow (1 0 0) oriented on (1 0 0)MgO substrate with [ 0 1 1 ] Rh 2 MnGe ∥ [ 0 1 0 ] MgO . The rocking curve widths of (4 0 0) reflections are below 1° and decrease with increasing deposition temperature. The flat surface of the thin films allowed lithographic patterning enabling quantitative magnetotransport measurements. We measured resistivity and the Hall effect. We suggest skew scattering as the dominant effect in the temperature dependent anomalous Hall effect, consistent with the theoretically expected s…

Materials scienceCondensed matter physicsScatteringElectrical resistivity and conductivityHall effectThermal Hall effectSubstrate (electronics)Thin filmCondensed Matter PhysicsEpitaxyElectronic Optical and Magnetic MaterialsPulsed laser depositionJournal of Magnetism and Magnetic Materials
researchProduct

Review on Raman scattering in semiconductor nanowires: I. theory

2013

Raman scattering is a nondestructive technique that is able to supply information on the crystal and electronic structures, strain, temperature, phonon-phonon, and electron-phonon interaction. In the particular case of semiconductor nanowires, Raman scattering provides addi- tional information related to surfaces. Although correct, a theoretical approach to analyze the surface optical modes loses critical information when retardation is neglected. A comparison of the retarded and unretarded approaches clarifies the role of the electric and magnetic polarization in the Raman selection rules. Since most III-V compounds growing in the zincblende phase change their crystal structure to wurtzite…

Materials scienceCondensed matter physicsScatteringPhononNanowirePhysics::OpticsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsLight scatteringElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeX-ray Raman scatteringsymbolsRaman spectroscopyRaman scatteringWurtzite crystal structureJournal of Nanophotonics
researchProduct

Deformation profile in GaN quantum dots: Medium-energy ion scattering experiments and theoretical calculations

2005

Medium energy ion scattering (MEIS) has been used to measure at the scale of the monolayer the deformation profile of self-organized GaN quantum dots grown on AlN by molecular-beam epitaxy. The effect of capping the GaN dots by a thin layer of AlN has also been studied. It is shown that GaN dots are partially relaxed in every situation. Capping them with AlN has little effect on the basal plane, as expected, but strongly modifies the strain of the upper part of dots. The experimental results are compared with theoretical calculations, allowing one to conclude that GaN quantum dots experience a nonbiaxial strain, which drastically decreases when going from the basal plane up to the apex of t…

Materials scienceCondensed matter physicsScatteringThin layerCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsEpitaxyElectronic Optical and Magnetic MaterialsIonCondensed Matter::Materials ScienceMedium energyQuantum dotMonolayerDeformation (engineering)Physical Review B
researchProduct

Electronic cooling and hot electron effects in heavily doped silicon-on-insulator film

2004

The influence of carrier concentration in silicon-on-insulator film on the thermal characteristics of semiconductor and performance of the superconductor-semiconductor-superconductor micro-coolers have been investigated at sub kelvin temperatures. The overheating of the lattice in heavily doped silicon film must be taken into account in the analysis of electron-phonon coupling experiment and operation of the cooler device. The heat flow between electrons and phonons in heavily doped silicon films is found to be proportional to T6, which is in accordance with theoretical prediction for dirty limit. Increasing the doping level in the semiconductor considerably increases both the efficiency of…

Materials scienceCondensed matter physicsSiliconPhononbusiness.industrySchottky barrierDopingchemistry.chemical_elementConductanceElectronCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceSemiconductorchemistryCondensed Matter::SuperconductivityThermalCondensed Matter::Strongly Correlated ElectronsbusinessMathematical PhysicsPhysica Scripta
researchProduct

Temperature-dependent resistivity and anomalous Hall effect in NiMnSb from first principles

2019

We present implementation of the alloy analogy model within fully relativistic density-functional theory with the coherent potential approximation for a treatment of nonzero temperatures. We calculate contributions of phonons and magnetic and chemical disorder to the temperature-dependent resistivity, anomalous Hall conductivity (AHC), and spin-resolved conductivity in ferromagnetic half-Heusler NiMnSb. Our electrical transport calculations with combined scattering effects agree well with experimental literature for Ni-rich NiMnSb with 1--2% Ni impurities on Mn sublattice. The calculated AHC is dominated by the Fermi surface term in the Kubo-Bastin formula. Moreover, the AHC as a function o…

Materials scienceCondensed matter physicsSpin polarizationPhononFermi surface02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceFerromagnetismHall effectElectrical resistivity and conductivity0103 physical sciencesCoherent potential approximation010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Thin epitaxial films of the Heusler compound

2005

Abstract We prepared thin films of the Heusler compound Co 2 Cr 0.6 Fe 0.4 Al with the B2 structure on a-plane (1 1  2 ¯  0) Al 2 O 3 by sputtering. Films grown at high temperatures ( T ⩾ 600 ∘ C ) on Al 2 O 3 are fully epitaxial with the (1 1 0) and (1  1 ¯  0) planes of the film parallel to the (1 1  2 ¯  0) and (0 0 0 1) planes of the substrate, respectively. These epitaxial films possess a higher surface roughness than films grown at room temperature. The films show nearly rectangular hysteresis loops with coercive fields of the order of 10 mT. Magnetooptical Kerr measurements show an in-plane anisotropy of the magnetization with the easy axis in { 0 0 1 } direction. Hall measurements s…

Materials scienceCondensed matter physicsSputter depositionengineering.materialCoercivityCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic MaterialsMagnetizationMagnetic anisotropySputteringHall effectengineeringThin filmJournal of Magnetism and Magnetic Materials
researchProduct

Charge-carrier density collapse in and epitaxial thin films

2000

We measured the temperature dependence of the linear high field pH of La0.67Ca0.33MnO3 Tc = 232K) and La0.67Sr0.33MnO3 Tc = 345K) thin films in the temperature range from 4 K up to 360 K in magnetic fields up to 20 T. At low temperatures we find a charge-carrier density of 1.3 and 1.4 holes per unit cell for the Ca- and Sr-doped compound, respectively. In this temperature range electron-magnon scattering contributes to the longitudinal resistivity. At the ferromagnetic transition temperature Tc a dramatic drop in the number of charge-carriers n down to 0.6 holes per unit cell, accompanied by an increase in unit cell volume, is observed. Corrections of the Hall data due to a non saturated ma…

Materials scienceCondensed matter physicsTransition temperatureAtmospheric temperature rangeCondensed Matter PhysicsMagnetic hysteresisElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMagnetizationFerromagnetismElectrical resistivity and conductivityHall effectCondensed Matter::Strongly Correlated ElectronsCharge carrierThe European Physical Journal B
researchProduct

Phonon dispersion in GaN/AlN non‐polar quantum wells: confinement and anisotropy

2007

We have calculated the phonon dispersion relations in a non-polar GaN/AlN quantum well within the dielectric continuum model and making use of Loudon's model of uniaxial crystals. Due to the strong in-plane anisotropy of this orientation, we have found that in general ordinary and extraordinary phonons are not decoupled. In this work we analyze the conditions for the occurrence of interface modes. In these novel heterostructures there is an added dependence of the phonon dispersion on the orientation of the in-plane phonon wavevector, which allows the existence of interface phonons at energies forbidden in the better known polar structures. Under particular circumstances the vibrations exci…

Materials scienceCondensed matter physicsUniaxial crystalPhononDielectricCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsCondensed Matter::Materials ScienceCondensed Matter::SuperconductivityDispersion relationDispersion (optics)AnisotropyQuantum wellWurtzite crystal structurephysica status solidi c
researchProduct