Search results for "Herbivory"

showing 10 items of 99 documents

Steroid Biomarkers Revisited - Improved Source Identification of Faecal Remains in Archaeological Soil Material.

2017

Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids). We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces …

010504 meteorology & atmospheric sciencesPhysiologySwineSocial Scienceslcsh:MedicinePlant ScienceBreeding01 natural sciencesFecesSoilchemistry.chemical_compoundChenodeoxycholic acidMedicine and Health SciencesBilelcsh:ScienceMammalsMultidisciplinaryEcologyOrganic CompoundsGoatsAgricultureRuminantsBreedBody FluidsTrophic InteractionsCoprostanolChemistrySterolsArchaeologyCommunity EcologyPhysical SciencesVertebratesSteroidsLivestockDonkeyAnatomyResearch Article010506 paleontologyLivestockEquinesBiologyGas Chromatography-Mass SpectrometryBile Acids and SaltsGoosePlant-Animal Interactionsbiology.animalAnimalsHumansHerbivoryHorsesFeces0105 earth and related environmental sciencesHerbivorebusiness.industryPlant EcologyOrganic ChemistryEcology and Environmental Scienceslcsh:RChemical CompoundsOrganismsBiology and Life SciencesArchaeologychemistryAmnioteslcsh:QbusinessBiomarkersPLoS ONE
researchProduct

Change in dominance determines herbivore effects on plant biodiversity

2018

Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response …

0106 biological sciences010504 meteorology & atmospheric sciencesIMPACTBiodiversity01 natural sciencesGrasslandRICHNESS2. Zero hungerarotMammalsgeography.geographical_feature_categoryPRODUCTIVITYEcologykasvillisuuseliöyhteisötBiodiversityPlantsGrasslandekologiaGrazingkasvinsyöjätinternationalDIVERSITY DEPENDS[SDE]Environmental SciencesDesert ClimateCIENCIAS NATURALES Y EXACTASCONSUMERnurmetBiologyECOLOGY010603 evolutionary biologyEnvironmental scienceCiencias BiológicasHigh productivitysavannitDominance (ecology)AnimalsEcosystemCommunity ecologyHerbivoryLife Below WaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesHerbivoregeographyEcología15. Life on landHerbaceous plantRESOURCE CONTROLbiodiversiteettiMeta-analysisMedio Ambiente13. Climate actionSpecies richnessVEGETATIONCOMMUNITIEScommunity ecology
researchProduct

The transcriptomics of an experimentally evolved plant-virus interaction

2015

[EN] Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogene…

0106 biological sciences0301 basic medicineArabidopsis thalianaPotyvirusArabidopsisFalse discovery rateLong-distance movementGeneralist and specialist species01 natural sciencesArticle03 medical and health sciencesPlant virusViral emergencePlant defense against herbivoryArabidopsis thalianaGeneticsEcotypeMultidisciplinarybiologyEcotypePlum pox virusTobacco etch virusGene Expression ProfilingfungiPotyvirusfood and beveragesTobacco-ETCH-virusbiology.organism_classification030104 developmental biologyExperimental evolutionABC transportersHost-Pathogen InteractionsGene expressionAdaptationChloroplast proteome010606 plant biology & botany
researchProduct

Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato

2021

Abstract Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants colonized by the AMF Funneliformis mosseae, evidencing mycorrhiza-induced resistance. In search of the underlying mechanisms, an untargeted metabolomic analysis through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) was performed. The results showed that mycorrhizal symbiosis had a very limited impact on the leaf metabolome in the absence of stress, but significantly m…

0106 biological sciences0301 basic medicineAzelaic acidPhysiologyPlant Science01 natural sciences03 medical and health sciencesMetabolomicsSolanum lycopersicumSymbiosisTandem Mass SpectrometrySpodoptera exiguaMycorrhizaeBotanyExiguamedicineMetabolomeAnimalsMetabolomicsmycorrhiza induced resistanceHerbivoryArbuscular mycorrhizaSymbiosisHerbivorebiologyAcademicSubjects/SCI01210AlkaloidfungiFungifood and beveragesbiology.organism_classificationResearch PapersArbuscular mycorrhizaspodoptera exigua030104 developmental biologyDefence primingPlant—Environment InteractionsMycorrhiza induced resistance Spodoptera exiguaChromatography Liquid010606 plant biology & botanymedicine.drug
researchProduct

Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory.

2016

The western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) is a major pest of maize (Zea mays) that is well adapted to most crop management strategies. Breeding for tolerance is a promising alternative to combat WCR but is currently constrained by a lack of physiological understanding and phenotyping tools. We developed dynamic precision phenotyping approaches using 11C with positron emission tomography, root autoradiography, and radiometabolite flux analysis to understand maize tolerance to WCR. Our results reveal that WCR attack induces specific patterns of lateral root growth that are associated with a shift in auxin biosynthesis from indole-3-pyruvic acid to indole-3-aceton…

0106 biological sciences0301 basic medicineCrops AgriculturalIndolesPhysiologyGlutamineResearch Articles - Focus IssuePlant Science580 Plants (Botany)01 natural sciencesPlant RootsZea maysHost-Parasite InteractionsCrop03 medical and health sciencesBotanyGeneticsAnimalsCarbon RadioisotopesHerbivoryAmino AcidsPlant DiseasesHerbivorebiologyIndoleacetic AcidsMechanism (biology)Lateral rootfungifood and beveragesBiological Transportbiology.organism_classificationZea maysColeoptera030104 developmental biologyWestern corn rootwormPhenotypeAgronomyPositron-Emission TomographyPEST analysisFlux (metabolism)010606 plant biology & botanyPlant physiology
researchProduct

Colorado potato beetle chymotrypsin genes are differentially regulated in larval midgut in response to the plant defense inducer hexanoic acid or the…

2019

When Colorado potato beetle larvae ingested potato plants treated with the plant defense inducer compound hexanoic acid, midgut chymotrypsin enzyme activity increased, and the corresponding chymotrypsin genes were differentially expressed, evidence of the larval digestive proteolytic system's plasticity. We previously reported increased susceptibility to Cry3Aa toxin in larvae fed hexanoic acid treated plants. Here we show that the most expressed chymotrypsin gene in larvae fed hexanoic acid treated plants, CTR6, was dramatically downregulated in Cry3Aa intoxicated larvae. lde-miR-965-5p and lde-miR-9a-5p microRNAs, predicted to target CTR6, might be involved in regulating the response to h…

0106 biological sciences0301 basic medicineGenes Insectmedicine.disease_cause01 natural sciencesMicrobiologyHemolysin Proteins03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsBacillus thuringiensisPlant defense against herbivorymedicineAnimalsChymotrypsinCaproatesEcology Evolution Behavior and SystematicsSolanum tuberosumHexanoic acidChymotrypsinBacillus thuringiensis ToxinsbiologyToxinfungiColorado potato beetlefood and beveragesMidgutbiology.organism_classificationEnzyme assayColeopteraEndotoxins010602 entomology030104 developmental biologyGene Expression RegulationchemistryLarvabiology.proteinDigestive SystemJournal of Invertebrate Pathology
researchProduct

GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth

2016

What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.

0106 biological sciences0301 basic medicineGlycosylationGlycosylationVery long chain fatty acidPlant ScienceBiologyCeramidesModels Biological01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsPlant defense against herbivoryAnimalsGlycosylInositolLipid bilayerSphingolipidsMini-ReviewPlantsSphingolipid030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

Influence of parasitoid-associated viral symbionts on plant–insect interactions and biological control

2021

International audience; Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential…

0106 biological sciences0301 basic medicineInsecta[SDV]Life Sciences [q-bio]media_common.quotation_subjectWaspsBiological pest controlInsectParasitoids plant-insect-microbeBiology010603 evolutionary biology01 natural sciencesHost-Parasite InteractionsParasitoid03 medical and health sciencesAnimalsHerbivoryFeeding patternsPest Control BiologicalSymbiosisEcology Evolution Behavior and Systematicsmedia_commonTrophic level2. Zero hungerHerbivoreHost (biology)fungifood and beveragesPlantsbiology.organism_classificationPhenotype030104 developmental biologyPolydnaviridaeEvolutionary biologyInsect ScienceCurrent Opinion in Insect Science
researchProduct

Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways

2020

: In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in &lsquo

0106 biological sciences0301 basic medicineNicotiana tabacumamino acid metabolismPlant Science01 natural sciencesplant insect herbivorySerine03 medical and health scienceschemistry.chemical_compoundBiosynthesislcsh:Botanynitrogen-13Shikimate pathwaycarbon-11Secondary metabolismEcology Evolution Behavior and SystematicsX-ray fluorescence imagingchemistry.chemical_classificationEcologybiologydefense primingJasmonic acidfungifood and beveragesbiology.organism_classificationlcsh:QK1-989Amino acidMetabolic pathway030104 developmental biologychemistryBiochemistryisotope ratio analysis010606 plant biology & botanyPlants
researchProduct

Oxylipin mediated stress response of a miraculin-like protease inhibitor in Hexanoic acid primed eggplant plants infested by Colorado potato beetle

2017

Insect-plant interactions are governed by a complex equilibrium between the mechanisms through which plant recognize insect attack and orchestrate downstream signaling events that trigger plant defense responses, and the mechanisms by which insects overcome plant defenses. Due to this tight and dynamic interplay, insight into the nature of the plant defense response can be gained by analyzing changes in the insect herbivores digestive system upon plant feeding. In this work we have identified a Solanum melongena miraculin-like protease inhibitor in the midgut juice of Colorado potato larvae feeding on eggplant plants treated with the natural inducer of plant defenses hexanoic acid. We analy…

0106 biological sciences0301 basic medicinePhysiologyMiraculinPlant ScienceEggplant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyPlant defense against herbivoryAnimalsColorado potato beetleProtease InhibitorsOxylipinsSolanum melongenaCaproatesMiraculin-like proteinHexanoic acidbiologyColorado potato beetlefungiPlant physiologyfood and beveragesOxylipinbiology.organism_classificationCell biologyColeoptera030104 developmental biologychemistryDefense primingSolanumHexanoic acidAgronomy and Crop ScienceSolanaceae010606 plant biology & botany
researchProduct