Search results for "Heterostructures"

showing 10 items of 20 documents

Porous clays heterostructures as supports of iron oxide for environmental catalysis

2018

[EN] Porous Clays Heterostructures (PCH) from natural pillared clays (bentonite with a high proportion of montmorillonite) have been used as supports of iron oxide for two reactions of environmental interest: i) the elimination of toluene (a representative compound of one of the most toxic subsets of volatile organic compounds, aromatics) by total oxidation and ii) the selective oxidation of H2S to elemental sulfur. For both reactions these catalysts have resulted to be remarkably more efficient than similar catalysts prepared using conventional silica as a support. Thus, in the total oxidation of toluene it has been observed that the catalytic activity obtained using siliceous PCH is two o…

inorganic chemicalsGeneral Chemical EngineeringInorganic chemistryIron oxidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringCatalysischemistry.chemical_compoundH2S to STotal and selective oxidationIron oxideEnvironmental ChemistrySulfatePorous Clays Heterostructures (PCH)ChemistryVOCGeneral Chemistry021001 nanoscience & nanotechnologySulfurToluene0104 chemical sciencesMontmorilloniteBentonite0210 nano-technologySelectivityTolueneChemical Engineering Journal
researchProduct

Facile synthesis of magnetically separable CoFe2O4/Ag2O/Ag2CO3 nanoheterostructures with high photocatalytic performance under visible light and enha…

2017

Riga Technical University supported the preparation of this manuscript from the Scientific Research Project Competition for Young Researchers No. ZP-2016/7. The authors wish to kindly acknowledge the financial support of HZB, Estonian Research Council (PUT1096, PUT735 and IUT2-25) and Estonian Centre of Excellence in Research Project “Advanced materials and high-technology devices for sustain-able energetics, sensorics and nanoelectronics” TK141 (2014–2020.4.01.15-0011).

Materials scienceMagneticNanoparticle02 engineering and technologyPhotocatalyticNanoheterostructures010402 general chemistryPhotochemistry01 natural sciencesSilver carbonatechemistry.chemical_compoundX-ray photoelectron spectroscopyPhase (matter):NATURAL SCIENCES:Physics [Research Subject Categories]Chemical Engineering (miscellaneous)PhotodegradationWaste Management and DisposalSilver carbonateta114Process Chemistry and Technology021001 nanoscience & nanotechnologyPollution0104 chemical scienceschemistryPhotocatalysis0210 nano-technologySilver oxideSilver oxideVisible spectrumJournal of Environmental Chemical Engineering
researchProduct

Fast-Response Single-Nanowire Photodetector Based on ZnO/WS 2 Core/Shell Heterostructures

2018

This work was supported by the Latvian National Research Program IMIS2 and ISSP project for Students and Young Researchers Nr. SJZ/2016/6. S.P. is grateful to the ERA.Net RUS Plus WATERSPLIT project no. 237 for the financial support. S.V. is grateful for partial support by the Estonian Science Foundation grant PUT1689.

Materials scienceNanostructureScanning electron microscopeNanowirePhotodetector02 engineering and technology010402 general chemistry01 natural sciences7. Clean energysymbols.namesake:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Sciencecore/shell nanowirestransitional metal chalcogenidesvan der Waals epitaxybusiness.industryHeterojunction021001 nanoscience & nanotechnology0104 chemical sciencesTransmission electron microscopy1D/1D heterostructuressymbolsphotodetectorsOptoelectronicsCharge carrier0210 nano-technologybusinessRaman spectroscopyACS Applied Materials & Interfaces
researchProduct

Photoluminescence Enhancement by Band Alignment Engineering in MoS 2 /FePS 3 van der Waals Heterostructures

2022

Single-layer semiconducting transition metal dichalcogenides (2H-TMDs) display robust excitonic photoluminescence emission, which can be improved by controlled changes to the environment and the chemical potential of the material. However, a drastic emission quench has been generally observed when TMDs are stacked in van der Waals heterostructures, which often favor the nonradiative recombination of photocarriers. Herein, we achieve an enhancement of the photoluminescence of single-layer MoS2 on top of van der Waals FePS3. The optimal energy band alignment of this heterostructure preserves light emission of MoS2 against nonradiative interlayer recombination processes and favors the charge t…

Transition metal dichalcogenide monolayersAlignment engineeringVan der Waals heterostructuresEnhanced photoluminescenceOptoelectronic tunabilityGeneral Materials ScienceMaterialsACS Applied Materials & Interfaces
researchProduct

Photoresponse of graphene ruthenium-complex heterostructures

2015

The aim of this study is to understand the photoresponse of a Ruthenium-complex/graphene heterostructure. Early work demonstrated that light detection by graphene field effect devices was enhanced by dropcasting Ruthenium Complex molecules. Here we proposed to fabricate a new class of devices where the Ruthenium-complex molecules are embedded between two layer of CVD monolayer graphene.

ruthenium-complex heterostructuresSettore ING-INF/02 - Campi ElettromagneticiGraphenePhotodetectorSettore ING-INF/01 - Elettronica
researchProduct

Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes

2019

We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…

010302 applied physicsMaterials sciencebusiness.industryGallium nitrideHeterojunction01 natural sciencesSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistrylawPhase (matter)0103 physical sciencesElectrodeOptoelectronicsNanorodChemical-bath deposition (CBD) contact injection current spreading length zinc oxide (ZnO) nanorods ZnO/GaN-based light-emitting diodes (LEDs) ZnO/GaN heterostructures.Electrical and Electronic EngineeringbusinessWurtzite crystal structureLight-emitting diodeDiode
researchProduct

Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane

2016

[EN] Porous clay heterostructures (PCH) have shown to be highly efficient supports for nickel oxide in the oxidative dehydrogenation of ethane. Thus NiO supported on silica with a PCH structure shows productivity towards ethylene three times higher than if NiO is supported on a conventional silica. This enhanced productivity is due to the increase in the catalytic activity and especially to the drastic increase in the selectivity to ethylene. Additionally, PCH silica partially modified with titanium in the columns (PCH-Ti) have also been synthesized and used as supports for NiO. An enhanced activity and selectivity to ethylene was found over NiO supported over PCH-Ti compared to the corresp…

EthyleneMaterials scienceCatalystsNickel oxideNon-blocking I/OInorganic chemistrychemistry.chemical_elementNickel oxide supported02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryPorous Clay HeterostructuresDehydrogenationOxidative dehydrogenation of ethane0210 nano-technologyDispersion (chemistry)SelectivityTitaniumCatalysis Science & Technology
researchProduct

Determination of defect content and defect profile in semiconductor heterostructures

2011

In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

HistoryMaterials sciencebusiness.industryAnalytical chemistryComputer Science ApplicationsEducationPositron annihilation spectroscopyCondensed Matter::Materials ScienceContent (measure theory)SapphireOptoelectronicsPoint (geometry)businessLayer (electronics)Doppler broadeningSemiconductor heterostructuresJournal of Physics: Conference Series
researchProduct

Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures

2021

Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …

Materials scienceBand gapquantum materialsStackingVan der Waals heterostructuresGeneral Physics and AstronomyFOS: Physical sciencescharge-density waves02 engineering and technologyQuantum entanglementDFT calculations01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciences11. Sustainability1T-TAS2General Materials Science010306 general physicsMaterialsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsGrapheneFermi levelphase-transitionsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Conductivitat elèctrica021001 nanoscience & nanotechnology2D materialsstatemodelelectrical propertiestransition-metal dichalcogenidessymbolsQuantum spin liquid0210 nano-technologyCharge density wave
researchProduct

Modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures

2018

This paper reports on the modification of the sheet resistance under Ti/Al/Ni/Au Ohmic contacts on AlGaN/GaN heterostructures, studied by means of Transmission Line Model (TLM) structures, morphological and structural analyses, as well as computer simulations. In particular, the contacts exhibited an Ohmic behaviour after annealing at 800 degrees C, with a specific contact resistance rho(c) = (2.4 +/- 0.2) x 10(-5) Omega cm(2), which was associated to morphological and structural changes of both the metal layer and the interface. Interestingly, TLM analyses gave a value of the sheet resistance under the contact (R-SK = 26.1 +/- 5.0 Omega/rectangle) significantly lower than that measured out…

Materials scienceAnnealing (metallurgy)Algan gan02 engineering and technology01 natural sciencesMetal0103 physical sciencesAlGaN/GaN heterostructuresGeneral Materials ScienceComposite materialOhmic contactSheet resistanceOhmic contacts010302 applied physicsbusiness.industryMechanical EngineeringContact resistanceTransmission Line ModelHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsSemiconductorMechanics of Materialsvisual_artvisual_art.visual_art_mediumTi/Al/Ni/Au0210 nano-technologybusiness
researchProduct