Search results for "Heusler compound"
showing 10 items of 52 documents
Half-metallic ferromagnetism with high magnetic moment and high Curie temperature in Co$_2$FeSi
2006
Co$_2$FeSi crystallizes in the ordered L2$_1$ structure as proved by X-ray diffraction and M\"o\ss bauer spectroscopy. The magnetic moment of Co$_2$FeSi was measured to be about $6\mu_B$ at 5K. Magnetic circular dichroism spectra excited by soft X-rays (XMCD) were taken to determine the element specific magnetic moments of Co and Fe. The Curie temperature was measured with different methods to be ($1100\pm20$)K. Co$_2$FeSi was found to be the Heusler compound as well as the half-metallic ferromagnet with the highest magnetic moment and Curie temperature.
Slater-Pauling Rule and Curie-Temperature of Co$_2$-based Heusler compounds
2005
A concept is presented serving to guide in the search for new materials with high spin polarization. It is shown that the magnetic moment of half-metallic ferromagnets can be calculated from the generalized Slater-Pauling rule. Further, it was found empirically that the Curie temperature of Co$_2$ based Heusler compounds can be estimated from a seemingly linear dependence on the magnetic moment. As a successful application of these simple rules, it was found that Co$_2$FeSi is, actually, the half-metallic ferromagnet exhibiting the highest magnetic moment and the highest Curie temperature measured for a Heusler compound.
Epitaxy of thin films of the Heusler compound
2007
Abstract Epitaxial thin films of the highly spin polarized Heusler compound Co 2 Cr 0.6 Fe 0.4 Al are deposited by DC magnetron sputtering. It is shown by XRD and TEM investigations how the use of an Fe buffer layer on MgO(1 0 0) substrates supports the growth of highly ordered Co 2 Cr 0.6 Fe 0.4 Al at low deposition temperatures. The as-grown samples show a relatively large ordered magnetic moment of μ ≃ 3.0 μ B / f . u . providing evidence for a low level of disorder.
Investigation of a novel material for magnetoelectronics: Co2Cr0.6Fe0.4Al
2003
Heusler compounds are promising candidates for future spintronics device applications. The electronic and magnetic properties of Co2Cr0.6Fe0.4Al, an electron-doped derivative of Co2CrAl, are investigated using circularly polarized synchrotron radiation and photoemission electron microscopy (PEEM). Element specific imaging reveals needle shaped Cr rich phases in a homogeneous bulk of the Heusler compound. The ferromagnetic domain structure is investigated on an element-resolved basis using x-ray magnetic circular dichroism (XMCD) contrast in PEEM. The structure is characterized by micrometre-size domains with a superimposed fine ripple structure; the lateral resolution in these images is abo…
Electronic structure and transport properties of the Heusler compound Co2TiAl
2009
The properties of the Heusler compound Co2TiAl were investigated in detail by experimental techniques and theoretical methods. X-ray diffraction measurements indicate that as-cast samples of the compound exhibit the L21 structure with a small amount of B2-type disorder. This leads to a reduced saturation magnetization per formula unit of 0.747 μB. The Curie temperature is approximately 120 K. The transport properties are influenced by the change in the electronic structure at the Curie temperature, as revealed experimentally by conductivity, thermal transport and specific heat measurements. Different theoretical models based on ab initio calculations of the electronic structure are used to …
Investigation of Co$_2$FeSi: The Heusler compound with Highest Curie Temperature and Magnetic Moment
2006
This work reports on structural and magnetic investigations of the Heusler compound Co$_2$FeSi. X-Ray diffraction and M\"o\ss bauer spectrometry indicate an ordered $L2_1$ structure. Magnetic measurements by means of X-ray magnetic circular dichroism and magnetometry revealed that this compound is, currently, the material with the highest magnetic moment ($6 \mu_B$) and Curie-temperature (1100K) in the classes of Heusler compounds as well as half-metallic ferromagnets.
Quaternary Heusler Compounds without Inversion Symmetry: CoFe 1+ x Ti 1– x Al and CoMn 1+ x V 1– x Al
2011
We report the quaternary Heusler compound derivatives CoFe1+xTi1–xAl and CoMn1+xV1–xAl, which do not have centers of inversion. Classical T2T′M (T, T′ = transition metal, M = main group element) Heusler compounds (prototype: Cu2MnAl) crystallize in the L21 structure, space group Fmm (225) that exhibits a center of inversion. Replacing one of the T2 atoms by another transition element (T″) results in a quaternary TT′T″M compound with F3m symmetry (Y; structure type LiMgPdSn) without center of inversion. In the case of “quasi closed shell” compounds with 24 valence electrons in the primitive cell, one expects the absence of ferromagnetism according to the Slater–Pauling rule. Increasing the n…
Co2CrIn: A further magnetic Heusler compound
2006
Summary and Outlook In summary, this work presents the synthesis andcharacterisation of the Heusler compound Co 2 CrIn.The compound is L2 1 ordered and shows no major an-tisite disorder. Co 2 CrIn turns out to be a ferrimagnetwith a magnetic moment of 1.18 µ B at 5 K. In addi-tion, the hysterisis curve reveals a soft magnetic be-haviour. A measurement of the site specific magneticmomentsis highlydesirableas it might leadto a deeperunderstanding of the magnetic properties of Co 2 CrIn.Furthermore, the measured magnetic moment is not aninteger number, as expected for a half-metallic ferro-magnet. Thus, Co 2 CrIn can not be a half-metallic fer-romagnet, as most of the other Co 2 YZ Heusler com-…
The Properties of Co2Cr1-xFexAl Heusler Compounds
2006
The classical concept of band structure tuning as used for semiconductors by partly replacing one atom by a chemical neighbor without altering the structure is applied examplarily to the half-metallic ferromagnetic Heusler compound Co 2 Cr 1 - x Fe x Al. Band structure calculations are presented for ordered and disordered compounds. We present experimental and theoretical results. The connection between specific site disorder and the band structure is shown explicitly with particular emphasis on the half-metallic properties. Experimentally observed deviations from the ideal Heusler structure and from the simple Slater-Pauling rule for the magnetization are discussed in close relation to the…
Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al
2003
Abstract Materials, which display large changes in resistivity in response to an applied magnetic field (magnetoresistance) are currently of great interest due to their potential for applications in magnetic sensors, magnetic random access memories, and spintronics. Guided by striking features in the electronic structure of several magnetic compounds, we prepared the Heusler compound Co2Cr0.6Fe0.4Al. Based on our band structure calculations, we have chosen this composition in order to obtain a half-metallic ferromagnet with a van Hove singularity in the vicinity of the Fermi energy in the majority spin channel and a gap in the minority spin channel. We find a magnetoresistive effect of 30% …