Search results for "Hysteresi"
showing 10 items of 250 documents
Dynamical effects and Terahertz harmonic generation in low-doped bulk semiconductors and submicron structures
2006
We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n+nn+ structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating s…
On the beneficial effect of rotor suspension anisotropy on viscous-dry hysteretic instability
2012
The destabilizing influence of the internal friction on the supercritical rotor whirl can be efficiently counterbalanced by other external dissipative sources and/or anisotropic suspension systems. The theoretical approach may take the internal dissipation into consideration either by dry or viscous models. Nevertheless, several numerical results and a new perturbation technique of the averaging type prove that similar rotor motions and stability limits are achievable by both models, whence the linear viscous assumption appears preferable. Thus, the internal hysteretic force may be expressed by the product of an equivalent viscous coefficient and the rotor centre velocity relative to a refe…
Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective
2018
Spin–vibration coupling has been proven to be crucial for spin dynamics; theoretical studies are now addressing this experimental challenge.
Magnetostochastic resonance under colored noise condition
2012
Stochastic resonance (SR) is an amplification of the system output in correspondence of well-defined finite values of the noise strength that is injected into the system [Gammaitoni et al., Rev. Mod. Phys. 70, 223 (1998), Grigorenko et al., IEEE Trans. Magn. 31, 2491 (1995), Mantegna et al., J. Appl. Phys. 97, 10E519 (2005)]. In order to clarify the influence of a colored noise, in this paper magnetostochastic resonance (MSR) in magnetic systems described by the dynamic Preisach model is numerically investigated in the presence of colored noise. In this paper it is shown that: a) noise spectrum affects MSR; b) white noise, 1/f and 1/f(2) noise induce in magnetic systems described by the dyn…
Stochastic resonance in magnetic systems described by Preisach hysteresis model
2005
We present a numerical study of stochastic resonance in magnetic systems described by Preisach hysteresis model. It is shown that stochastic resonance occurs in these systems. Specifically, the signal-to-noise ratio sSNRd and the signal amplification sSAd present a maximum as a function of noise intensity. We also found that the hysteresis loops, dynamically described by the system, are strongly modified near the maxima of SNR and of SA.
Theory and modeling of polarization switching in ferroelectrics
2005
Abstract Kinetics of polarization response in ferroelectrics is reproduced within Langevin, Fokker–Planck and imaginary time Schrodinger equation techniques for energy functionals of growing complexity modeling an assembly of coarse grained particles with attractive first neighbor interaction. Symplectic integration based numerical approach captures dynamic hysteresis, polarization switching, and spatially extended stationary polarization. Solution of relevant nonstationary problem is adapted to large scale parallel computing.
Capillary pressure, hysteresis and residual saturation in porous media
2006
Abstract A macroscopic theory for capillarity in porous media is presented. The capillary pressure function in this theory is not an input parameter but an outcome. The theory is based on introducing the trapped or residual saturations as state variables. It allows to predict spatiotemporal changes in residual saturation. The theory yields process dependence and hysteresis in capillary pressure as its main result.
Josephson junctions and SQUIDs based on artificial grain boundaries in Bi 2 Sr 2 Ca 2 Cu 3 O 10 -thin films
1996
ABSTRACT High quality thin films of Bi2 Sr Ca2 Cu3 0 with critical temperatures of 95 K were used to prepare grainboundary josephson junctions on commercial 36.8° SrTiOg-bicrystal substrates. IR-products of 50 pV at 77 Kand 0.7 mV at 4.2 K have been reached. For temperatures higher than 50 K the current-voltage curves of thejunctions can be well described by the resistively shunted junction (RSJ) model and show no hysteresis. Fromthe hysteretic behavior at low temperature we estimate a junction capacitance of 2ljiF/cm2. The Fraunhoferpattern of the critical current in an external applied field shows, that the junctions are inhomogeneous on a pm scale. The SQUID modulation of a 30 x 40 pm2 w…
Spin crossover properties of the [Fe(PM-BiA)2(NCS)2] complex - phases I and II
2003
International audience; In the present review, we reexamine the photomagnetic properties of the [Fe(PM-BiA)2(NCS)2], cis-bis(thiocyanato)-bis[(N-2'-pyridylmethylene)-4-(aminobiphenyl)]iron(II), compound which exhibits, depending on the synthetic method, an exceptionally abrupt spin transition (phase I) with a very narrow hysteresis (T1/2O = 168 K and T1/2N = 173 K) or a gradual spin conversion (phase II) occurring at 190 K. In both cases, light irradiation in the tail of the 1MLCT-LS absorption band, at 830 nm, results in the population of the high-spin state according to the light-induced excited spin-state trapping (LIESST) effect. The capacity of a compound to retain the light-induced HS…
A dynamic model for hysteresis in magnetostrictive devices
2014
In this paper, a dynamic model for the description and design of hysteresis in magnetostrictive devices is presented. The model is based on Preisach theory and its dynamic extension. A procedure for determining the Preisach distribution function is given. This procedure is based on neural networks. The model is able to reconstruct both the magnetization relation and the field-strain relation. The model is validated through comparison and prediction of data collected from a typical Terfenol-D sample and a novel experimental technique dedicated to the validation of dynamic models is proposed.