Search results for "INSTABILITIES"

showing 10 items of 61 documents

Coexistence of single-mode and multi-longitudinal mode emission in the ring laser model

2005

A homogeneously broadened unidirectonal ring laser can emit in several longitudinal modes for large enough pump and cavity length because of Rabi splitting induced gain. This is the so called Risken-Nummedal-Graham-Haken (RNGH) instability. We investigate numerically the properties of the multi-mode solution. We show that this solution can coexist with the single-mode one, and its stability domain can extend to pump values smaller than the critical pump of the RNGH instability. Morevoer, we show that the multi-mode solution for large pump values is affected by two different instabilities: a pitchfork bifurcation, which preserves phase-locking, and a Hopf bifurcation, which destroys it.

BistabilityFOS: Physical sciencesPhysics::OpticsRing laserInstabilityOptical bistabilityLongitudinal modesymbols.namesakeINSTABILITIESOpticsElectrical and Electronic EngineeringPhysical and Theoretical ChemistryHopf bifurcationPhysicsbusiness.industrySingle-mode optical fiberNonlinear Sciences - Chaotic DynamicsAtomic and Molecular Physics and OpticsPULSESElectronic Optical and Magnetic MaterialsPitchfork bifurcationsymbolsTURBULENCEChaotic Dynamics (nlin.CD)businessOptics (physics.optics)Physics - Optics
researchProduct

Spectral function for overoccupied gluodynamics from real-time lattice simulations

2018

We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…

CLASSICAL APPROXIMATIONNuclear Theorynucl-thquark-gluon plasmahep-latFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesquantum chromodynamicsQCD PLASMA INSTABILITIESStatistical physicsGauge theorynonperturbative effects in field theory010306 general physicsHARD THERMAL LOOPSParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsta114010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmafinite temperature field theorylattice field theoryISOTROPIZATIONParticle Physics - Latticehep-ph16. Peace & justiceFIELD-THEORYGluonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryQuark–gluon plasmaHIGH-TEMPERATUREGAUGE-THEORIESQuasiparticleSpectral functionkvanttikenttäteoriaStatistical correlationrelativistic heavy-ion collisions
researchProduct

Hamiltonian tools for the analysis of optical polarization control

2011

Import JabRef; International audience; The study of the polarization dynamics of two counterpropagating beams in optical fibers has recently been the subject of a growing renewed interest, from both the theoretical and experimental points of view. This system exhibits a phenomenon of polarization attraction, which can be used to achieve a complete polarization of an initially unpolarized signal beam, almost without any loss of energy. Along the same way, an arbitrary polarization state of the signal beam can be controlled and converted into any other desired state of polarization, by adjusting the polarization state of the counterpropagating pump beam. These properties have been demonstrate…

DYNAMICSOptical fiberWAVESSPUNPhysics::OpticsATTRACTION01 natural scienceslaw.invention010309 opticsCOUNTERPROPAGATING LASER-BEAMSINSTABILITIESlawQuantum mechanics0103 physical sciences010306 general physicsCircular polarizationPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Linear polarizationNonlinear opticsStatistical and Nonlinear PhysicsOptical polarizationPolarization (waves)Atomic and Molecular Physics and OpticsClassical mechanicsLIGHTSignal beamPolarization mode dispersionCHAOSSOLITONSFIBERS
researchProduct

Linear Response Theory with finite-range interactions

2021

International audience; This review focuses on the calculation of infinite nuclear matter response functions using phenomenological finite-range interactions, equipped or not with tensor terms. These include Gogny and Nakada families, which are commonly used in the literature. Because of the finite-range, the main technical difficulty stems from the exchange terms of the particle–hole interaction. We first present results based on the so-called Landau and Landau-like approximations of the particle–hole interaction. Then, we review two methods which in principle provide numerically exact response functions. The first one is based on a multipolar expansion of both the particle–hole interactio…

Finite-range interactionsNuclear and High Energy PhysicsFinite size instabilities[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryFormalism (philosophy)Gogny and Nakada interactionsFOS: Physical sciencesContinued fraction approximation01 natural sciencesNuclear Theory (nucl-th)0103 physical sciencesTensorStatistical physics010306 general physicsContinued fractionPhysicsDegree (graph theory)010308 nuclear & particles physicsPropagatorFunction (mathematics)16. Peace & justiceNuclear matterLinear response theoryMultipolar expansionLinear response theory
researchProduct

Dynamical stability of a many-body Kapitza pendulum

2015

We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine-Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the effective Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent vari…

Floquet theoryPhysicsDynamical instabilitiesQuantum Physicsperiodic drivingsGeneral Physics and AstronomySemiclassical physicsFOS: Physical sciencesKinetic termMany bodyDynamical instabilities periodic drivingssymbols.namesakeAmplitudeClassical mechanicsQuantum Gases (cond-mat.quant-gas)symbolsCondensed Matter - Quantum GasesHamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumPhase diagram
researchProduct

QPO emission from moving hot spots on the surface of neutron stars: a model

2009

We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEquatorFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion discs instabilities MHD stars: magnetic fields stars: neutron stars: oscillationsAstrophysics01 natural sciencesAccretion (astrophysics)Neutron starAccretion rateSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesPolarAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveAstrophysics::Earth and Planetary AstrophysicsQuasi periodic010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

ROLE OF EJECTA CLUMPING AND BACK-REACTION OF ACCELERATED COSMIC RAYS IN THE EVOLUTION OF TYPE Ia SUPERNOVA REMNANTS

2012

We investigate the role played by initial clumping of ejecta and by efficient acceleration of cosmic rays (CRs) in determining the density structure of the post-shock region of a Type Ia supernova remnant (SNR) through detailed 3D MHD modeling. Our model describes the expansion of a SNR through a magnetized interstellar medium (ISM), including the initial clumping of ejecta and the effects on shock dynamics due to back-reaction of accelerated CRs. The model predictions are compared to the observations of SN 1006. We found that the back-reaction of accelerated CRs alone cannot reproduce the observed separation between the forward shock (FS) and the contact discontinuity (CD) unless the energ…

High Energy Astrophysical Phenomena (astro-ph.HE)Shock wavePhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsShock (mechanics)cosmic rays instabilities ISM: supernova remnants magnetohydrodynamics: MHD shock waves supernovae: individual: SN 1006Interstellar mediumSupernovaSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaEjectaSupernova remnantAstrophysics::Galaxy AstrophysicsThe Astrophysical Journal
researchProduct

Evidence for past interaction with an asymmetric circumstellar shell in the young SNR Cassiopeia A

2022

Observations of the SNR Cassiopeia A (Cas A) show asymmetries in the reverse shock that cannot be explained by models describing a remnant expanding through a spherically symmetric wind of the progenitor star. We investigate whether a past interaction of Cas A with an asymmetric circumstellar shell can account for the observed asymmetries. We performed 3D MHD simulations that describe the remnant evolution from the SN to its interaction with a circumstellar shell. The initial conditions are provided by a 3D neutrino-driven SN model whose morphology resembles Cas A. We explored the parameter space of the shell, searching for a set of parameters able to produce reverse shock asymmetries at th…

High Energy Astrophysical Phenomena (astro-ph.HE)supernovae: individual: Cassiopeia AAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsshock wavesX-rays: ISMSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceinstabilitieshydrodynamicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsISM: supernova remnants
researchProduct

Chirality transfer and chiral turbulence in gauge theories

2020

Chirality transfer between fermions and gauge fields plays a crucial role for understanding the dynamics of anomalous transport phenomena such as the Chiral Magnetic Effect. In this proceeding we present a first principles study of these processes based on classical-statistical real-time lattice simulations of strongly coupled QED $(e^2N_f=64)$. Our simulations demonstrate that a chirality imbalance in the fermion sector triggers chiral plasma instabilities in the gauge field sector, which ultimately lead to the generation of long range helical magnetic fields via a self-similar turbulent cascade of the magnetic helicity.

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::Latticechiral plasma instabilitiesFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Magnetic helicity0103 physical sciencesGauge theory010306 general physicsPhysicsChirality transferchiral turbulence010308 nuclear & particles physicsmagnetogensisHigh Energy Physics::PhenomenologyFermionPlasmaMagnetic fieldHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)CascadeQuantum electrodynamicsChirality (chemistry)Transport phenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Instabilités hydrodynamiques de fluides magnétiques en écoulements microfluidiques

2015

Advisors: Prof. Andrejs Cēbers (University of Latvia) & Prof. Régine Perzynski (University of Pierre and Marie Curie)

InstabilitiesMicrofluidicsMagnetic fluids:NATURAL SCIENCES [Research Subject Categories]Micro-convectionMagnetic drops
researchProduct