Search results for "IRC"
showing 10 items of 5754 documents
Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models
2018
[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.
Marginal and internal fit evaluation of conventional metal-ceramic versus zirconia CAD/CAM crowns
2019
Background The purpose of this in vivo study was to compare the marginal and internal gap widths of monolithic zirconia crowns fabricated by CAD/CAM technique and metal-ceramic crowns fabricated by conventional technique. Material and methods 10 participants needing a single restoration were selected. Zirconia crowns using CAD/CAM technology (Group A) (n=10) and metal-ceramic crowns (Group B) (n=10) using lost wax casting technique were fabricated for each selected tooth. The marginal and internal gaps of crowns were recorded using a replica technique with light body silicone material stabilized with a regular set putty. Each replica was sectioned buccolingually and mesiodistally and then e…
Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits
2016
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition b…
Identification of parameters and harmonic losses of a deep-bar induction motor
2017
High frequency harmonics from a frequency converter causes additional losses in a deep-bar induction motor. The harmonics have their own amplitude and phase with respect to the fundamental signal, but the harmonic loss is only dependent on the amplitude of harmonics. A deep-bar induction motor can be modelled by a triple-cage circuit to take skin effect into account. The triple cage circuit having many parameters could be estimated from a small-signal model of the machine by using Differential Evolution. The correctly estimated parameters make the triple-cage circuit valid in a wide range of frequencies. However, the triple-cage circuit is very complicated which makes it difficult to model …
2019
We present a design for producing precisely adjustable and alternating single-axis magnetic fields based on nested Halbach dipole pairs consisting of permanent magnets only. Our design allows for three dimensional optical and mechanical access to a region with strong adjustable dipolar fields, is compatible with systems operating under vacuum, and does not effectively dissipate heat under normal operational conditions. We present a theoretical analysis of the properties and capabilities of our design and construct a proof-of-concept prototype. Using our prototype, we demonstrate fields of up to several kilogauss with field homogeneities of better than 5%, which are harmonically modulated at…
A summary of expressions for central performance parameters of high efficiency solar cell concepts
2019
This work reviews expressions for central performance parameters of various types of PV-concepts when operating at the radiative limit. Some new expressions not published elsewhere are also included. The performance parameters include the short circuit current density, the open circuit voltage, the maximum power density and the optimal voltage. The cell concepts include single junction cells, cells optically coupled to up- and down-converters, intermediate band solar cells and a couple of implementations of multijunction devices. The Lambert W function is used to express the maximum power density.
Formation of translucent nanostructured zirconia ceramics
2021
Abstract In this work the mechanisms that affect the optical transparency of nanostructured translucent ZrO2 ceramics are studied. The translucent ceramic samples were obtained from a low agglomeration nanosized powder at low pressure and low temperature sintering. Even low pressures cause structural changes and defect creation in the nanocrystals. Annealing was used to study the grain formation, structure and impact of defects. Significant changes in translucency were observed with increase in pore size. In order to further understand the defect creation, the obtained ceramics were doped with Er3+ ions and studied optically. Photoluminescence studies revealed a change in the ratio of green…
Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy
2019
The low-frequency noise in a nanometer-sized virtual memristor consisting of a contact of a conductive atomic force microscope (CAFM) probe to an yttria stabilized zirconia (YSZ) thin film deposited on a conductive substrate is investigated. YSZ is a promising material for the memristor application since it is featured by high oxygen ion mobility, and the oxygen vacancy concentration in YSZ can be controlled by varying the molar fraction of the stabilizing yttrium oxide. Due to the low diameter of the CAFM probe contact to the YSZ film (similar to 10nm), we are able to measure the electric current flowing through an individual filament both in the low resistive state (LRS) and in the high r…
A Novel Fault-Tolerant Routing Algorithm for Mesh-of-Tree Based Network-on-Chips
2019
Use of bus architecture based communication with increasing processing elements in System-on-Chip (SoC) leads to severe degradation of performance and speed of the system. This bottleneck is overcome with the introduction of Network-on-Chips (NoCs). NoCs assist in communication between cores on a single chip using router based packet switching technique. Due to miniaturization, NoCs like every Integrated circuit is prone to different kinds of faults which can be transient, intermittent or permanent. A fault in any one component of such a crucial network can degrade performance leaving other components non-usable. This paper presents a novel Fault-Tolerant routing Algorithm for Mesh-of-Tree …
Silicon dosimeters based on Floating Gate Sensor: design, implementation and characterization
2020
A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Rad…