Search results for "Image segmentation"
showing 10 items of 234 documents
Large scale semi-supervised image segmentation with active queries
2011
A semiautomatic procedure to generate classification maps of remote sensing images is proposed. Starting from a hierarchical unsupervised classification, the algorithm exploits the few available labeled pixels to assign each cluster to the most probable class. For a given amount of labeled pixels, the algorithm returns a classified segmentation map, along with confidence levels of class membership for each pixel. Active learning methods are used to select the most informative samples to increase confidence in the class membership. Experiments on a AVIRIS hyperspectral image confirm the effectiveness of the method, especially when used with active learning query functions and spatial regular…
Image Segmentation and Object Extraction for Automatic Diatoms Classification
2018
The diatoms are unicellular algae of great interest in paleontology, aquatic ecology, and forensic medicine, among others. Currently, there are more than 100 000 known species distributed in aquatic ecosystems. For that reason, there is a big interest in the automatic classification of diatom images, however, the preliminary process applied to isolate the diatom from the background is a complex task. In this paper, we propose a segmentation method and an object-extraction procedure to extract the diatom from the background. First, we binarize the image by searching the optimal threshold in the histogram based on its cumulative distribution function. Then we eliminate, under some spatial cri…
Segmentation Integrating Watershed and Shape Priors Applied to Cardiac Delayed Enhancement MR Images
2017
International audience; Background: In recent years, there has been a rapid rise in the use of shape priors applied to segmentation process of medical images. Previous approaches on left ventricle segmentation from Delayed-Enhancement Magnetic Resonance Imaging (DE-MRI) have focused on the extraction of myocardium or just diseased region in short axis orientation. However these studies did not take into account the segmentation of non-diseased myocardium from DE-MRI. The segmentation of non-diseased myocardium from DE-MRI, has some useful applications. For instance it can simplify the PET-MR registration process.Methods: This paper presents a novel semi-automatic segmentation method of non-…
FABC: Retinal Vessel Segmentation Using AdaBoost
2010
This paper presents a method for automated vessel segmentation in retinal images. For each pixel in the field of view of the image, a 41-D feature vector is constructed, encoding information on the local intensity structure, spatial properties, and geometry at multiple scales. An AdaBoost classifier is trained on 789 914 gold standard examples of vessel and nonvessel pixels, then used for classifying previously unseen images. The algorithm was tested on the public digital retinal images for vessel extraction (DRIVE) set, frequently used in the literature and consisting of 40 manually labeled images with gold standard. Results were compared experimentally with those of eight algorithms as we…
Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation.
2019
In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. Wit…
Baļķu skaita, izmēru un formu noteikšana no fotogrāfijas
2015
Maģistra darba ietvaros tika izpetītas iespējas – kā var veikt veikt analīzi fotogrāfijām ar baļķiem. Lai mērķi sasniegt tika definētas prasības algoritmam, kuras aprakstīs – kadus paramētrus ir nepieciešams nolasīt no fotografijas, kadas ir prasības apparatūrai un kāds ir pieeņemams kļudu limenis. Papildus tika definētas prasības ievaddatiem. Tika aprakstīti iespējami soļi, kuros var sadalīt atpazīšanas algoritmu un detalizēti aprakstīts iespējams risinājums katram solim. Darba ietvaros tika izpetīti pieejamie riķi problēmas risināšanai, aprakstīti rīku priekšrocības un trūkumi. Darba rezultāta tika ieguts teoretisks pamats programmas izveidošanai un izveidots programmas pirmais prototips.
MRI resolution enhancement using total variation regularization
2009
We propose a novel method for resolution enhancement for volumetric images based on a variational-based reconstruction approach. The reconstruction problem is posed using a deconvolution model that seeks to minimize the total variation norm of the image. Additionally, we propose a new edge-preserving operator that emphasizes and even enhances edges during the up-sampling and decimation of the image. The edge enhanced reconstruction is shown to yield significant improvement in resolution, especially preserving important edges containing anatomical information. This method is demonstrated as an enhancement tool for low-resolution, anisotropic, 3D brain MRI images, as well as a pre-processing …
Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation
2018
International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …
Depth Map Generation by Image Classification
2004
This paper presents a novel and fully automatic technique to estimate depth information from a single input image. The proposed method is based on a new image classification technique able to classify digital images (also in Bayer pattern format) as indoor, outdoor with geometric elements or outdoor without geometric elements. Using the information collected in the classification step a suitable depth map is estimated. The proposed technique is fully unsupervised and is able to generate depth map from a single view of the scene, requiring low computational resources.
Discrete wavelet transform based multispectral filter array demosaicking
2013
International audience; The idea of colour filter array may be adapted to multi-spectral image acquisition by integrating more filter types into the array, and developing associated demosaicking algorithms. Several methods employing discrete wavelet transform (DWT) have been proposed for CFA demosaicking. In this work, we put forward an extended use of DWT for mul-tispectral filter array demosaicking. The extension seemed straightforward, however we observed striking results. This work contributes to better understanding of the issue by demonstrating that spectral correlation and spatial resolution of the images exerts a crucial influence on the performance of DWT based demosaicking.