Search results for "Inflation"

showing 10 items of 210 documents

Constant-roll inflation: confrontation with recent observational data

2017

The previously proposed class of phenomenological inflationary models in which the assumption of inflaton slow-roll is replaced by the more general, constant-roll condition is compared with the most recent cosmological observational data, mainly the Planck ones. Models in this two-parametric class which remain viable appear to be close to the slow-roll ones, and their inflaton potentials are close to (but still different from) that of the natural inflation model. Permitted regions for the two model parameters are presented.

High Energy Physics - TheoryClass (set theory)Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesGeneral Physics and AstronomyModel parametersGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsGeneral Relativity and Quantum Cosmology0103 physical sciencesPlanck010306 general physicsPhysicsInflation (cosmology)010308 nuclear & particles physicsInflatonHigh Energy Physics - Theory (hep-th)symbolsObservational studyConstant (mathematics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

f(R) constant-roll inflation

2017

The previously introduced class of two-parametric phenomenological inflationary models in General Relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of $f(R)$ gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function $f(R)$ (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determin…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)General relativityScalar (mathematics)FOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. RadioactivityEinstein010306 general physicsParametric equationEngineering (miscellaneous)Mathematical physicsPhysicsInflation (cosmology)010308 nuclear & particles physicsFunction (mathematics)High Energy Physics - Theory (hep-th)Metric (mathematics)symbolslcsh:QC770-798Constant (mathematics)Astrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C: Particles and Fields
researchProduct

Narrowing the window of inflationary magnetogenesis

2017

We consider inflationary magnetogenesis where the conformal symmetry is broken by the term $f^2(\phi) F_{\alpha\beta} F^{\alpha\beta}$. We assume that the magnetic field power spectrum today between 0.1 and $10^4$ Mpc is a power law, with upper and lower limits from observation. This fixes $f$ to be close to a power law in conformal time in the window during inflation when the modes observed today are generated. In contrast to previous work, we do not make any assumptions about the form of $f$ outside these scales. We cover all possible reheating histories, described by an average equation of state $-1/3 <\bar{w} <1$. Requiring that strong coupling and large backreaction are avoided both at…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcprimordial magnetic fieldsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesPower law114 Physical sciencesGeneral Relativity and Quantum CosmologyConformal symmetry0103 physical sciencesinflation010303 astronomy & astrophysicsSTFCST/L005573/1ComputingMilieux_MISCELLANEOUSInflation (cosmology)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsEquation of state (cosmology)hep-thRCUKCONSTRAINTSAstronomy and Astrophysics115 Astronomy Space scienceMagnetic fieldOrders of magnitude (time)High Energy Physics - Theory (hep-th)Quantum electrodynamicsCOSMOLOGYSCALE MAGNETIC-FIELDSastro-ph.COBack-reactionST/K00090X/1Order of magnitudeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe

2020

It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves,…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)reheatingmedia_common.quotation_subjectnucleosynthesis: big bangDark matterFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologydark matterGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesenergy: density010306 general physicsmedia_commonInflation (cosmology)Physics010308 nuclear & particles physicsGravitational wave[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]gravitational radiationAstronomyUniverseinflation: modelBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]history[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]black hole: primordialasymmetryAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct

Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run

2021

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G\mu$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolat…

High Energy Physics - TheoryDewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftengravitational radiation: stochasticAstronomyCosmic stringsWAVESGeneral Physics and Astronomy01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologyGravitation Cosmology & AstrophysicsGravitationLIMITSCosmic strings & domain wallCosmology & Astrophysicsddc:550Distribution modelsTransient signalenergy: densityLIGOQCstochastic modelLIGO Scientific CollaborationShort durationsCosmic strings & domain walls; Gravitational waves; Gravitation Cosmology & AstrophysicsQBPhysicsCosmic strings & domain wallskinkSettore FIS/03Stochastic systems[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thPhysicsGravitational effectsarticleGRAVITATIONAL-RADIATION; LIMITS; EVOLUTION; WAVEStensionGravitational-wave signalsCosmologyPhysical Sciencesastro-ph.COGrand unified theories[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational waveAstrophysics - Cosmology and Nongalactic AstrophysicsGravitational effects; Gravity waves; Stochastic models; Stochastic systems; Cosmic strings; Distribution models; Grand unified theories; Gravitational-wave signals; Orders of magnitude; Short durations; Template-based; Transient signalGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcPhysics MultidisciplinaryGRAVITATIONAL-RADIATIONO3FOS: Physical sciencesContext (language use)General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy(all)Gravity wavesGravitation and AstrophysicsGravitational wavesTheoretical physicsGeneral Relativity and Quantum Cosmologystatistical analysis0103 physical sciencesTemplate-basedCosmic Strings O3 LIGO Virgoddc:530010306 general physicscosmic stringSTFCInflation (cosmology)Science & Technology010308 nuclear & particles physicsGravitational wavestring tensionVirgogravitational radiation: backgroundRCUKLIGOEVOLUTIONCosmic stringStochastic modelsOrders of magnitudeVIRGOHigh Energy Physics - Theory (hep-th)Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Renormalisation group improvement in the stochastic formalism

2019

We investigate compatibility between the stochastic infrared (IR) resummation of light test fields on inflationary spacetimes and renormalisation group running of the ultra-violet (UV) physics. Using the Wilsonian approach, we derive improved stochastic Langevin and Fokker-Planck equations which consistently include the renormalisation group effects. With the exception of stationary solutions, these differ from the naive approach of simply replacing the classical potential in the standard stochastic equations with the renormalisation group improved potential. Using this new formalism, we exemplify the IR dynamics with the Yukawa theory during inflation, illustrating the differences between …

High Energy Physics - TheoryGAUGED NJL-MODELgr-qcHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)PROPAGATORFLATNESSHORIZON0201 Astronomical and Space Sciences0103 physical sciencesphysics of the early universeinflationINFLATIONARY UNIVERSE SCENARIOResummationMathematical physicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicshep-thYukawa potentialhep-phAstronomy and AstrophysicsEXPANSIONNuclear & Particles Physicsquantum field theory on curved spaceFormalism (philosophy of mathematics)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)particle physics - cosmology connectionINTERACTING SCALAR FIELDVACUUMPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsPHASE-TRANSITIONGENERATION
researchProduct

Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld

2014

We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a {\it minimal} version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also…

High Energy Physics - TheoryModified gravityAlternatives to inflationCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativityGravityFOS: Physical sciencesPerfect fluidddc:500.2General Relativity and Quantum Cosmology (gr-qc)Space (mathematics)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeTheoretical physicsGeneral Relativity and Quantum Cosmology0103 physical sciencesEinstein010306 general physicsPhysics010308 nuclear & particles physicsEquation of state (cosmology)Astronomy and AstrophysicsMassive gravityHigh Energy Physics - Theory (hep-th)symbolsGravitational singularityAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Tensor bounds on the hidden universe

2018

During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)ddc:500.201 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensorPlanck010306 general physicsmedia_commonPhysicsInflation (cosmology)Slow roll010308 nuclear & particles physicsScalar (physics)InflatonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Renormalization Regularization and RenormalonsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Transplanckian inflation as gravity echoes

2015

In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible accommodate a large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime.

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)FOS: Physical sciences01 natural sciencesGravitationTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTensor010306 general physicsMinimal couplingPhysicsInflation (cosmology)010308 nuclear & particles physicsFísicaInflatonlcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Einstein field equationslcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct