Search results for "Inuit"

showing 10 items of 490 documents

A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term

2017

This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in (Julin, ARMA -15), to prove a generalized Carleson estimate. We also prove boundary H\"older continuity and a boundary Harnack type inequality.

Mathematics::Analysis of PDEsGeneralized Carleson estimateBoundary (topology)Hölder conditionnonlinear elliptic equations01 natural sciencesHarnack's principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: MathematicsNon-Lipschitz drift0101 mathematicsElliptic PDECarleson estimateHarnack's inequalityMathematics010102 general mathematicsMathematical analysista111Type inequalityLipschitz continuityTerm (time)010101 applied mathematicsNonlinear systemAnalysisAnalysis of PDEs (math.AP)
researchProduct

Noncoincidence of Approximate and Limiting Subdifferentials of Integral Functionals

2011

For a locally Lipschitz integral functional $I_f$ on $L^1(T,\mathbf{R}^n)$ associated with a measurable integrand f, the limiting subdifferential and the approximate subdifferential never coincide at a point $x_0$ where $f(t,\cdot)$ is not subdifferentially regular at $x_0(t)$ for a.e. $t\in T$. The coincidence of both subdifferentials occurs on a dense set of $L^1(T,\mathbf{R}^n)$ if and only if $f(t,\cdot)$ is convex for a.e. $t\in T$. Our results allow us to characterize Aubin's Lipschitz-like property as well as the convexity of multivalued mappings between $L^1$-spaces. New necessary optimality conditions for some Bolza problems are also obtained.

Mathematics::Functional AnalysisPure mathematicsControl and OptimizationDense setApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMathematics::Optimization and ControlRegular polygonLimitingSubderivativeLipschitz continuityConvexityCoincidenceMathematicsSIAM Journal on Control and Optimization
researchProduct

METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS

2013

AbstractAn extension of Rademacher’s theorem is proved for Lipschitz mappings between Banach spaces without the Radon–Nikodým property.

Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsBanach spaceLipschitz continuityRadon-Nikodym PropertyLipschitz domainSettore MAT/05 - Analisi MatematicaLipschitz mapsMetric (mathematics)Metric mapMetric Diff erentiability.Differentiable functionMetric differentialSemi-differentiabilityMathematicsJournal of the Australian Mathematical Society
researchProduct

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

2020

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral Mathematics010102 general mathematicsAbsolute continuity01 natural sciencesMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaEuclidean distanceSobolev spaceNorm (mathematics)0103 physical sciencesRadon measureFOS: Mathematics010307 mathematical physics0101 mathematicsfunktionaalianalyysi53C23 46E35 26B05MathematicsComptes Rendus. Mathématique
researchProduct

Critical points for nondifferentiable functions in presence of splitting

2006

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

Mathematics::Functional AnalysisPure mathematicsnon-smooth functionNonsmooth functionssplittingApplied MathematicsMathematical analysisMultiple solutionsMultiple solutionMathematics::Analysis of PDEsRegular polygoncritical point; non-smooth function; splittingcritical pointMultiplicity (mathematics)Critical pointsNonsmooth functionElliptic variational-hemivariational eigenvalue problemLipschitz continuityCritical point (mathematics)Elliptic variational–hemivariational eigenvalue problemsSplittingsEigenvalues and eigenvectorsAnalysisMathematics
researchProduct

Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains

2010

We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.

Mathematics::Functional AnalysisSmoothness (probability theory)General MathematicsProbability (math.PR)Mathematics::Analysis of PDEsScale (descriptive set theory)Numerical Analysis (math.NA)Lipschitz continuitySobolev spaceStochastic partial differential equation60H15 Secondary: 46E35 65C30WaveletRate of convergenceBounded functionFOS: MathematicsApplied mathematicsMathematics - Numerical AnalysisMathematics - ProbabilityMathematicsStudia Mathematica
researchProduct

Mappings of finite distortion: The sharp modulus of continuity

2003

We establish an essentially sharp modulus of continuity for mappings of subexponentially integrable distortion.

Mathematics::ProbabilityIntegrable systemApplied MathematicsGeneral MathematicsDistortionMathematical analysisGeometryComputer Science::Computational ComplexityComputer Science::Data Structures and AlgorithmsModulus of continuityMathematicsTransactions of the American Mathematical Society
researchProduct

Mean curvature flow of graphs in warped products

2012

Let M be a complete Riemannian manifold which either is compact or has a pole, and let φ be a positive smooth function on M . In the warped product M ×φ R, we study the flow by the mean curvature of a locally Lipschitz continuous graph on M and prove that the flow exists for all time and that the evolving hypersurface is C∞ for t > 0 and is a graph for all t. Moreover, under certain conditions, the flow has a well defined limit.

Mean curvature flowPure mathematicsMean curvatureApplied MathematicsGeneral MathematicsMathematical analysisRiemannian manifoldLipschitz continuityCurvatureGraphHypersurfaceMathematics::Differential GeometryMathematicsScalar curvatureTransactions of the American Mathematical Society
researchProduct

Heterogeneous structures studied by an interphase elasto-plastic damaging model

2013

Heterogeneous materials present a mechanical response strongly dependent on the static and kinematic phenomena occurring in the constituents and at their joints. At the mesoscopic level the interaction between the units is simulated by mean of apposite mechanical devices such as the zero thickness interface model where contact tractions and displacement discontinuities are the primary static and kinematic variables respectively. In heterogeneous materials the response also depends on joint internal stresses. The introduction of internal stresses brings to the interphase model or an enhancement of the classical zero-thickness interface. With the term 'interphase' we shall mean a layer separa…

Mechanical responseMaterials scienceHeterogeneous materialMultilayer structureElasto plasticDisplacement discontinuityInterphaseZero-thickness interfacesComposite materialKinematic variableSettore ICAR/08 - Scienza Delle CostruzioniHeterogeneous structureFinite element analysis program
researchProduct

Phylogeographic patterns of decapod crustaceans at the Atlantic-Mediterranean transition.

2012

9 páginas, 4 figuras, 3 tablas.

Mediterranean climateGene FlowGenetic SpeciationBiologyOceanographic discontinuitiesPopulation structureDNA MitochondrialGene flowElectron Transport Complex IVMediterranean seaDepth distributionDecapodaGeneticsMediterranean SeaAnimalsMolecular BiologyAtlantic OceanEcology Evolution Behavior and SystematicsPhylogenymtDNAEcologyGenetic VariationLast Glacial MaximumSequence Analysis DNAbiology.organism_classificationCrustaceanPhylogeographyPhylogeographyHaplotypesGlaciationsLiocarcinus depuratorGlobal biodiversityMolecular phylogenetics and evolution
researchProduct