Search results for "Inuit"
showing 10 items of 490 documents
A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term
2017
This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in (Julin, ARMA -15), to prove a generalized Carleson estimate. We also prove boundary H\"older continuity and a boundary Harnack type inequality.
Noncoincidence of Approximate and Limiting Subdifferentials of Integral Functionals
2011
For a locally Lipschitz integral functional $I_f$ on $L^1(T,\mathbf{R}^n)$ associated with a measurable integrand f, the limiting subdifferential and the approximate subdifferential never coincide at a point $x_0$ where $f(t,\cdot)$ is not subdifferentially regular at $x_0(t)$ for a.e. $t\in T$. The coincidence of both subdifferentials occurs on a dense set of $L^1(T,\mathbf{R}^n)$ if and only if $f(t,\cdot)$ is convex for a.e. $t\in T$. Our results allow us to characterize Aubin's Lipschitz-like property as well as the convexity of multivalued mappings between $L^1$-spaces. New necessary optimality conditions for some Bolza problems are also obtained.
METRIC DIFFERENTIABILITY OF LIPSCHITZ MAPS
2013
AbstractAn extension of Rademacher’s theorem is proved for Lipschitz mappings between Banach spaces without the Radon–Nikodým property.
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
2020
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
Critical points for nondifferentiable functions in presence of splitting
2006
A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.
Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
2010
We use the scale of Besov spaces B^\alpha_{\tau,\tau}(O), \alpha>0, 1/\tau=\alpha/d+1/p, p fixed, to study the spatial regularity of the solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O\subset R^d. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
Mappings of finite distortion: The sharp modulus of continuity
2003
We establish an essentially sharp modulus of continuity for mappings of subexponentially integrable distortion.
Mean curvature flow of graphs in warped products
2012
Let M be a complete Riemannian manifold which either is compact or has a pole, and let φ be a positive smooth function on M . In the warped product M ×φ R, we study the flow by the mean curvature of a locally Lipschitz continuous graph on M and prove that the flow exists for all time and that the evolving hypersurface is C∞ for t > 0 and is a graph for all t. Moreover, under certain conditions, the flow has a well defined limit.
Heterogeneous structures studied by an interphase elasto-plastic damaging model
2013
Heterogeneous materials present a mechanical response strongly dependent on the static and kinematic phenomena occurring in the constituents and at their joints. At the mesoscopic level the interaction between the units is simulated by mean of apposite mechanical devices such as the zero thickness interface model where contact tractions and displacement discontinuities are the primary static and kinematic variables respectively. In heterogeneous materials the response also depends on joint internal stresses. The introduction of internal stresses brings to the interphase model or an enhancement of the classical zero-thickness interface. With the term 'interphase' we shall mean a layer separa…
Phylogeographic patterns of decapod crustaceans at the Atlantic-Mediterranean transition.
2012
9 páginas, 4 figuras, 3 tablas.