Search results for "Inverse problem"
showing 10 items of 163 documents
Coherent Quantum Tomography
2016
We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…
Unique continuation of the normal operator of the x-ray transform and applications in geophysics
2020
We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.
Multi-frequency orthogonality sampling for inverse obstacle scattering problems
2011
We discuss a simple non-iterative method to reconstruct the support of a collection of obstacles from the measurements of far-field patterns of acoustic or electromagnetic waves corresponding to plane-wave incident fields with one or few incident directions at several frequencies. The method is a variant of the orthogonality sampling algorithm recently studied by Potthast (2010 Inverse Problems 26 074015). Our theoretical analysis of the algorithm relies on an asymptotic expansion of the far-field pattern of the scattered field as the size of the scatterers tends to zero with respect to the wavelength of the incident field that holds not only at a single frequency, but also across appropria…
The effect of vertical ground movement on masonry walls simulated through an elastic–plastic interphase meso-model: a case study
2019
The present paper proposes an interphase model for the simulation of damage propagation in masonry walls in the framework of a mesoscopic approach. The model is thermodynamically consistent, with constitutive relations derived from a Helmholtz free potential energy. With respect to classic interface elements, the internal stress contribute is added to the contact stresses. It is considered that damage, in the form of loss of adhesion or cohesion, can potentially take place at each of the two blocks–mortar physical interfaces. Flow rules are obtained in the framework of the Theory of Plasticity, considering bilinear domains of ‘Coulomb with tension cut-off’ type. The model aims to be a first…
Determination of relaxation and retardation spectrum by inverse functional filtering
2010
Abstract The article is devoted for the determination of the relaxation and retardation spectrum (RRS) from monotonic time- and frequency-domain material functions by the inverse functional filters executing discrete convolution algorithms for geometrically spaced data. It is shown that the problem of RRS determination from a wide variety of material functions leads to the three inverse filtering tasks on a logarithmic time or frequency scale with the three specific frequency responses concerning: (i) the time-domain functions, (ii) the real parts and (iii) the imaginary parts of the frequency-domain functions, and three algorithms (having the versions with even and odd number of coefficien…
Inverse Problems Light: Numerical Differentiation
2001
(2001). Inverse Problems Light: Numerical Differentiation. The American Mathematical Monthly: Vol. 108, No. 6, pp. 512-521.
Recovery of time-dependent coefficients from boundary data for hyperbolic equations
2019
We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.
Tensor tomography in periodic slabs
2018
Abstract The X-ray transform on the periodic slab [ 0 , 1 ] × T n , n ≥ 0 , has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless n = 0 . We characterize the kernel of the geodesic X-ray transform for L 2 -regular m -tensors for any m ≥ 0 . The characterization extends to more general manifolds, twisted slabs, including the Mobius strip as the simplest example.
The Factorization Method for Electrical Impedance Tomography in the Half-Space
2008
We consider the inverse problem of electrical impedance tomography in a conducting half-space, given electrostatic measurements on its boundary, i.e., a hyperplane. We first provide a rigorous weak analysis of the corresponding forward problem and then develop a numerical algorithm to solve an associated inverse problem. This inverse problem consists of the reconstruction of certain inclusions within the half-space which have a different conductivity than the background. To solve the inverse problem we employ the so-called factorization method of Kirsch, which so far has only been considered for the impedance tomography problem in bounded domains. Our analysis of the forward problem makes u…
Dimension bounds in monotonicity methods for the Helmholtz equation
2019
The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. peerReviewed