Search results for "Ion beam"

showing 10 items of 297 documents

The upgraded ISOLDE yield database – A new tool to predict beam intensities

2020

At the CERN-ISOLDE facility a variety of radioactive ion beams are available to users of the facility. The number of extractable isotopes estimated from yield database data exceeds 1000 and is still increasing. Due to high demand and scarcity of available beam time, precise experiment planning is required. The yield database stores information about radioactive beam yields and the combination of target material and ion source needed to extract a certain beam along with their respective operating conditions. It allows to investigate the feasibility of an experiment and the estimation of required beamtime. With the increasing demand for ever more exotic beams, needs arise to extend the functi…

Radioactive ion beamsNuclear and High Energy PhysicsYieldsComputer sciencecomputer.software_genre114 Physical sciences01 natural sciencesISOLDEDatabaseFLUKACERN0103 physical sciencesddc:530Production Yield010306 general physicsInstrumentationLarge Hadron ColliderDatabase010308 nuclear & particles physicsIn-target productionYield predictionCross sectionsYield (chemistry)ABRABLAIONIZATIONRelease efficiencycomputerRadioactive beamBeam (structure)Radioactive beamsNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Towards commissioning the new IGISOL-4 facility

2013

Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…

Radioactive ion beamsNuclear and High Energy Physicsta114Project commissioningComputer scienceNuclear engineeringDetectorCyclotronExperimental researchlaw.inventionNuclear physicslawNeutronInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Twin GEM-TPC prototype (HGB4) beam test at GSI and Jyväskylä : a development for the Super-FRS at FAIR

2017

The FAIR[1] facility is an international accelerator centre for research with ion and antiproton beams. It is being built at Darmstadt, Germany as an extension to the current GSI research institute. One major part of the facility will be the Super-FRS[2] separator, which will be include in phase one of the project construction. The NUSTAR experiments will benefit from the Super-FRS, which will deliver an unprecedented range of radioactive ion beams (RIB). These experiments will use beams of different energies and characteristics in three different branches; the high-energy which utilizes the RIB at relativistic energies 300-1500 MeV/u as created in the production process, the low-energy bra…

Radioactive ion beamsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSeparator (oil production)hiukkaskiihdyttimet01 natural sciences7. Clean energy114 Physical sciencesParticle identificationNuclear physics0103 physical sciencesElectronicsNuclear ExperimentdetectorsPhysicsta114010308 nuclear & particles physicsProjectileI.2.7Detectorparticle acceleratorsilmaisimetAntiprotonPhysics::Accelerator PhysicsF.2.2Beam (structure)
researchProduct

The SPEDE Spectrometer: Combined In-Beam γ-ray and Conversion Electron Spectroscopy with Radioactive Ion Beams

2015

The SPEDE spectrometer [1] aims to combine a silicon detector, for the detection of electrons, with the MINIBALL γ-ray detection array for in-beam studies employing radioactive ion beams at the HIE-ISOLDE facility at CERN. The setup will be primarily used for octupole collectivity [2] and shape coexistence studies [3, 4] in Coulomb excitation experiments. In the shape coexistence cases the transitions between states of the same spin and parity have enhanced E0 strength [5]. Additionally the 0→0 transitions, typically present in nuclei exhibiting shape coexistence [6], can only occur via E0 transitions, i.e. via internal conversion electron emission.

Radioactive ion beamsPhysicsLarge Hadron ColliderSpectrometerta114Physics::Instrumentation and DetectorsParity (physics)Coulomb excitationElectronElectron spectroscopyPhysics::Accelerator PhysicsSilicon detectorAtomic physicsconversion electron spectrometersNuclear Experiment
researchProduct

Beam cooler for low-energy radioactive ions

2001

Abstract An ion beam cooler for mass-separated radioactive ion beams has been developed and tested at the IGISOL-type mass separator facility. Technical description and characteristic properties are presented. An energy spread below 1 eV and transmission efficiency of 60% were measured.

Radioactive ion beamsPhysicsNuclear and High Energy PhysicsIon beamSeparator (oil production)Ion gunIonIon beam depositionLow energyPhysics::Accelerator PhysicsAtomic physicsNuclear ExperimentInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

A sextupole ion beam guide to improve the efficiency and beam quality at IGISOL

2008

The laser ion source project at the IGISOL facility, Jyvaskyla, has motivated the development and construction of an rf sextupole ion beam guide (SPIG) to replace the original skimmer electrode. The SPIG has been tested both off-line and on-line in proton-induced fission, light-ion and heavy-ion induced fusion-evaporation reactions and, in each case, has been directly compared to the skimmer system. For both fission and light-ion induced fusion, the SPIG has improved the mass-separated ion yields by a factor of typically 4 to 8. Correspondingly, the transmission efficiency of both systems has been studied in simulations with and without space charge effects. The transport capacity of the SP…

Radioactive ion beamsPhysicsNuclear and High Energy PhysicsIon beambusiness.industryFOS: Physical sciencesOpticsPhysics::Plasma PhysicsLaser beam qualityNuclear Experiment (nucl-ex)businessNuclear ExperimentInstrumentationNuclear Experiment
researchProduct

External-ion accumulation in a Penning trap with quadrupole excitation assisted buffer gas cooling

1994

Abstract A pulsed ion beam from an external source is injected into a Penning trap and accumulated by repeatedly lowering during ion capture to prevent the ions already captured from escaping. For the same reason the newly captured ions have to be cooled, which achieved by buffer gas collisions. To prevent radial on loss, the ions are exposed to azimuthal quadrupole excitation. By choosing the appropriate frequency (range) this method (selective quadrupole excitation assisted capture and centering (SQUEACE) allows a mass selection during the capture process and leads to a centering of those ions in the Penning trap. The multiple ion bunch capture results in a significant improvement in sign…

Range (particle radiation)Ion beamPhysics::Plasma PhysicsChemistryBuffer gasQuadrupolePhysics::Atomic PhysicsIon trapAtomic physicsPenning trapSpectroscopyExcitationIonInternational Journal of Mass Spectrometry and Ion Processes
researchProduct

Investigation of heavy ion produced defect structures in insulators by small angle scattering

1985

Fast heavy ions produce stable defects in most dielectrica. As examples mica, Polyethylenterephtalat and Polystyrol were irradiated with Ar, Ni, Kr, Xe and U ions in an energy range from 0.5 up to 20 MeV/u. The resulting defects were investigated by neutron and x-ray small-angle scattering. The ion beam supplied by the UNILAC accelerator at GSI Darmstadt is characterized by its small emittance, the well defined mass, charge and energy of the ions and their stochastical distribution in the phase space. In scattering experiments the system of scattering centers created by these ions causes a scattered intensity distribution which strongly depends on the orientation of the sample with respect …

Range (particle radiation)Materials sciencePhysics and Astronomy (miscellaneous)Ion beamScatteringGeneral EngineeringGeneral ChemistryNeutron scatteringIonPhysics::Accelerator PhysicsGeneral Materials ScienceNeutronSmall-angle scatteringAtomic physicsNuclear ExperimentBeam (structure)Applied Physics A Solids and Surfaces
researchProduct

Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale

2015

Abstract A wide range of analytical techniques were used to investigate rock varnish from different locations (Negev, Israel; Knersvlakte, South Africa; Death Valley and Mojave Desert, California): a 200 nm-femtosecond laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), an electron probe microanalyzer (EPMA), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy–near edge X-ray absorption fine structure spectroscopy (STXM–NEXAFS). This combination enables comprehensive high-spatial-resolution analysis of rock varnish. Femtosecond LA-ICP-MS and EPMA were used for quantitative determination of element concentrations. In-situ measurements were conducte…

Rare-earth elementDesert varnishVarnishAnalytical chemistryMineralogyGeologyElectron microprobeFocused ion beamXANESGeochemistry and Petrologyvisual_artvisual_art.visual_art_mediumSpectroscopyAbsorption (electromagnetic radiation)GeologyChemical Geology
researchProduct

High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2+ primary beam

2012

Abstract We present a secondary ionization mass spectrometry (SIMS) technique for U–Pb geochronology of rutile at high spatial resolution and sensitivity using an O2+ primary ion beam coupled with surficial O2 gas deposition (O2 flooding). The O2+ beam is ~ 10 × more intense than conventionally applied O− or O2− beams at the same lateral resolution. Natural and synthetic rutile was determined to be conductive under O2+ bombardment, permitting higher excavation (sputter) rates than conventional SIMS using negatively charged O-beams without detrimental effects of sample charging. The main advantage of O2+ is rapid sputtering at shallow primary ion penetration depths. This minimizes the contri…

Secondary ion mass spectrometryIon beamGeochemistry and PetrologyRutileSputteringAnalytical chemistryCrystal orientationHigh spatial resolutionGeologyGeologyBeam (structure)IonChemical Geology
researchProduct