Search results for "Isomer"
showing 10 items of 1308 documents
On the mechanism of catalytic isomerization of xylenes. Molecular orbital studies
1979
Abstract On the basis of CNDO/2 molecular orbital calculations, we postulate the following detailed mechanism for the catalytic isomerization of xylenes which explains the initial product distributions and also our previous finding that the reaction is intramolecular: (i) adsorption of xylene on a surface acid site to form a Wheland-type complex; (ii) disrotatory cyclization of the protonated species into a bicyclo[3, 1, 0]hexenyl complex; (iii) migration of the methylene bridge to a new side of the pentagonal ring; (iv) change of the new bicyclic species back into the corresponding Wheland-type complex; (v) desorption of the xylene isomer from the surface of the catalyst. The overall rate …
Auxiliary-controlled stereoselective enolate protonation: Enantioselective synthesis of cis and trans annulated decahydroquinoline alkaloids
1998
Abstract The diastereoselective synthesis of the octahydroquinoline enone precursor of pumiliotoxin C is achieved via tandem Mannich-Michael reaction on N-galactosyl imines. Conjugate cuprate addition to the bicyclic enone stereoselectively forms the trans annulated 4a- epi -pumiliotoxin C skeleton in the presence of the carbohydrate auxiliary, and the cis annulated pumiliotoxin C skeleton in its absence.
Two-carbon bridge substituted cocaines: enantioselective synthesis, attribution of the absolute configuration and biological activity of novel 6- and…
1999
In an effort to learn more about the general structure-activity relationships of cocaine with the aim to elucidate those structural features that might confer antagonistic properties to such analogues, we describe herein our synthetic efforts to prepare two-carbon bridge functionalized (methoxylated and hydroxylated) analogues. Our approach makes use of a modification of the classical Willstatter synthesis of cocaine: Mannich type cyclization of acetonedicarboxylic acid monomethyl ester with methylamine hydrochloride and 2-methoxysuccindialdehyde in a citrate buffer solution afforded the 6- and 7-substituted 2-carbomethoxy-3-tropinones 3a,b and 4a,b in approximate yields of 64%. Reduction o…
Synthesis of new, UV-photoactive dansyl derivatives for flow cytometric studies on bile acid uptake.
2009
Four new fluorescent derivatives of cholic acid have been synthesized; they incorporate a dansyl moiety at 3 alpha-, 3 beta-, 7 alpha- or 7 beta- positions. These cholic acid analogs are UV photoactive and also exhibit green fluorescence. In addition, they have been demonstrated to be suitable for studying the kinetics of bile acid transport by flow cytometry.
A full conformational space analysis of bilirubin
2009
Ab initio methods were utilized in a gas-phase systematic conformational search of bilirubin conformers. The whole molecule was divided into four fragments. Most stable conformers of them were employed to build 196 conformers of the complete bilirubin molecule. Initial geometries were optimized using HF/3-21G level of theory and the minimum energy conformers were then reoptimized at B3LYP/6-31G(d) level. Ridge-tile conformer was the most stable one, in perfect agreement with X-ray data. We found that while tetrapyrrole backbone shows some flexibility, propionic acid side chains have a greater influence in bilirubin conformation because they can interact through different hydrogen bond patte…
Tracking Changes in Protonation and Conformation during Photoactivation of a Phytochrome Protein
2016
Phytochromes are photosensor proteins in plants and bacteria. The biological response is mediated by structural changes that follow photon absorption in the protein complex. The initial step is the photoisomerization of the biliverdin chromophore. How this leads to large-scale structural changes of the whole complex is, however, poorly understood. In this work, we use molecular dynamics (MD) simulations to investigate the structural changes after isomerization. In particular, we perform MD simulations at constant pH, using a recently developed method, to explore the effect of chromophore isomerization on the protonation (pKa) of nearby residues. In addition, we use a hybrid quantum mechanic…
Modifying the body distribution of HPMA-based copolymers by molecular weight and aggregate formation.
2011
There is a recognized need to create well-defined polymer probes for in vivo and clinical positron emission tomography (PET) imaging to guide the development of new generation polymer therapeutics. Using the RAFT polymerization technique in combination with the reactive ester approach, here we have synthesized well-defined and narrowly distributed N-(2-hydroxypropyl)methacrylamide homopolymers (pHPMA) (P1* and P2*) and random HPMA copolymers consisting of hydrophilic HPMA and hydrophobic lauryl methacrylate comonomers (P3* and P4*). The polymers had molecular weights below (P1* and P3*) and above the renal threshold (P2* and P4*). Whereas the homopolymers dissolve in isotonic solution as in…
Conformational Isomerism: Influence of the Z / E Isomerism on the Pathway Complexity of a Squaramide‐Based Macrocycle (Small 7/2021)
2021
A photoswitchable helical peptide with light-controllable interface/transmembrane topology in lipidic membranes
2021
Summary The spontaneous insertion of helical transmembrane (TM) polypeptides into lipid bilayers is driven by three sequential equilibria: solution-to-membrane interface (MI) partition, unstructured-to-helical folding, and MI-to-TM helix insertion. A bottleneck for understanding these three steps is the lack of experimental approaches to perturb membrane-bound hydrophobic polypeptides out of equilibrium rapidly and reversibly. Here, we report on a 24-residues-long hydrophobic α-helical polypeptide, covalently coupled to an azobenzene photoswitch (KCALP-azo), which displays a light-controllable TM/MI equilibrium in hydrated lipid bilayers. FTIR spectroscopy reveals that trans KCALP-azo folds…
Topoisomerase II regulates yeast genes with singular chromatin architectures
2013
Eukaryotic topoisomerase II (topo II) is the essential decatenase of newly replicated chromosomes and the main relaxase of nucleosomal DNA. Apart from these general tasks, topo II participates in more specialized functions. In mammals, topo IIa interacts with specific RNA polymerases and chromatin-remodeling complexes, whereas topo IIb regulates developmental genes in conjunction with chromatin remodeling and heterochromatin transitions. Here we show that in budding yeast, topo II regulates the expression of specific gene subsets. To uncover this, we carried out a genomic transcription run-on shortly after the thermal inactivation of topo II. We identified a modest number of genes not invol…