Search results for "Isoperimetric inequality"

showing 10 items of 29 documents

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

Isoperimetric inequality from the poisson equation via curvature

2012

In this paper, we establish an isoperimetric inequality in a metric measure space via the Poisson equation. Let (X,d,μ) be a complete, pathwise connected metric space with locally Ahlfors Q-regular measure, where Q > 1, that supports a local L2-Poincare inequality. We show that, for the Poisson equation Δu = g, if the local L∞-norm of the gradient Du can be bounded by the Lorentz norm LQ,1 of g, then we obtain an isoperimetric inequality and a Sobolev inequality in (X,d,μ) with optimal exponents. By assuming a suitable curvature lower bound, we establish such optimal bounds on . © 2011 Wiley Periodicals, Inc.

Hölder's inequalityApplied MathematicsGeneral Mathematicsta111Mathematical analysisPoincaré inequalityIsoperimetric dimensionMinkowski inequalitySobolev inequalityMetric spacesymbols.namesakesymbolsLog sum inequalityIsoperimetric inequalityMathematicsCommunications on Pure and Applied Mathematics
researchProduct

Loomis-Whitney inequalities in Heisenberg groups

2021

This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…

Mathematics - Classical Analysis and ODEsSobolev inequalityClassical Analysis and ODEs (math.CA)FOS: Mathematicsmittateoria28A75 52C99 46E35 35R03isoperimetric inequalityepäyhtälötfunktionaalianalyysiLoomis–Whitney inequalityHeisenberg groupRadon transformmatemaattinen analyysi
researchProduct

Semianalyticity of isoperimetric profiles

2009

It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.

Mathematics - Differential Geometry0209 industrial biotechnologyRiemannian Geometry Real Analytic Geometry Geometric measure Theory Metric Geometry Geometric Analysis.Calibration (statistics)02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake020901 industrial engineering & automationFOS: MathematicsMathematics::Metric GeometryMorse theory0101 mathematicsMathematics::Symplectic GeometryIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsMathematical analysis53C20;49Q20;14P15;32B20Differential Geometry (math.DG)Computational Theory and Mathematics[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Riemann surfaceCalibrationsymbolsGeometry and TopologyMathematics::Differential GeometryIsoperimetric inequalityAnalysis
researchProduct

Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds

2012

Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Mathematics - Differential GeometryIsoperimetric dimensionRiemannian geometryTopology01 natural sciencessymbols.namesakeRicci-flat manifoldFOS: MathematicsDifferentiable functionMorse theory0101 mathematicsTopology (chemistry)Computer Science::DatabasesIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsGeneral Medicinecalibration53C20;49Q20;14P15;32B20010101 applied mathematicsDifferential Geometry (math.DG)Riemann surface[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential GeometryIsoperimetric inequality
researchProduct

Gradient estimates for heat kernels and harmonic functions

2020

Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…

Mathematics - Differential GeometryPure mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)Sobolev inequalitydifferentiaaligeometriaRiesz transformsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryLi-Yau estimates0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsRiesz transformosittaisdifferentiaaliyhtälötSemigroupDirichlet form010102 general mathematicsMetric Geometry (math.MG)harmoninen analyysiheat kernelsDifferential Geometry (math.DG)Harmonic functionMathematics - Classical Analysis and ODEssymbolspotentiaaliteoria010307 mathematical physicsIsoperimetric inequalityharmonic functionsAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

SPACES OF SMALL METRIC COTYPE

2010

Naor and Mendel's metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz equivalent to an ultrametric space has infinimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov-Hausdorff limits, and use these facts to establish a partial converse of the main result.

Mathematics::Functional AnalysisPure mathematics30L05 46B85010102 general mathematicsBanach spaceMetric Geometry (math.MG)0102 computer and information sciences16. Peace & justice01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spaceMathematics - Metric Geometry010201 computation theory & mathematicsConverseMetric (mathematics)FOS: MathematicsMathematics::Metric GeometryGeometry and Topology0101 mathematicsIsoperimetric inequalityUltrametric spaceAnalysisMathematicsJournal of Topology and Analysis
researchProduct

Sharp estimates for eigenfunctions of a Neumann problem

2009

In this paper we provide some bounds for the eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in a bounded domain Ω of R^n. To this aim we use the so-called symmetrization techniques and the obtained estimates are asymptotically sharp, at least in the bidimensional case, when the isoperimetric constant relative to Ω goes to 0.

Neumann eigenvaluesApplied MathematicsMathematical analysisSymmetrizationMathematics::Spectral TheoryNeumann seriessymbols.namesakeVon Neumann algebraSettore MAT/05 - Analisi MatematicaBounded functionNeumann boundary conditionsymbolsSymmetrizationAbelian von Neumann algebraIsoperimetric inequalityAffiliated operatorAnalysisMathematics
researchProduct

Remark on a nonlocal isoperimetric problem

2017

Abstract We consider isoperimetric problem with a nonlocal repulsive term given by the Newtonian potential. We prove that regular critical sets of the functional are analytic. This optimal regularity holds also for critical sets of the Ohta–Kawasaki functional. We also prove that when the strength of the nonlocal part is small the ball is the only possible stable critical set.

Newtonian potentialcritical pointsApplied Mathematics010102 general mathematicsMathematical analysista111Isoperimetric dimension01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsshape optimizationFOS: Mathematicsisoperimetric problemShape optimizationBall (mathematics)0101 mathematicsIsoperimetric inequalityAnalysisCritical setAnalysis of PDEs (math.AP)MathematicsNonlinear Analysis: Theory, Methods and Applications
researchProduct

Nonlocal Isoperimetric Inequality

2019

For the nonlocal perimeter, there is also an isoperimetric inequality, and here the main hypothesis used on J is that it is radially nonincreasing.

PerimeterStatistics::TheoryMathematics::ProbabilityMathematical analysisMathematics::Metric GeometryMathematics::Differential GeometryComputer Science::Computational GeometryIsoperimetric inequalityMathematics
researchProduct