Search results for "JNK."

showing 10 items of 53 documents

DNA replication arrest in response to genotoxic stress provokes early activation of stress-activated protein kinases (SAPK/JNK).

2009

Abstract The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin…

AphidicolinDNA ReplicationDNA damageUltraviolet RaysPoly ADP ribose polymeraseCell Linechemistry.chemical_compoundMiceAphidicolinStructural BiologyCricetinaeAnimalsHumansLymphocytesPhosphorylationProtein kinase AMolecular BiologyNucleic Acid Synthesis InhibitorsBRCA2 ProteinMice KnockoutbiologyKinaseCell CycleDNA replicationJNK Mitogen-Activated Protein KinasesFibroblastsMolecular biologyProliferating cell nuclear antigenDNA-Binding ProteinsEnzyme ActivationchemistryPyrimidine Dimersbiology.proteinPhosphorylationApoptosis Regulatory ProteinsDNA DamageJournal of molecular biology
researchProduct

JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways

2006

The proteasome inhibitor bortezomib is an efficacious apoptotic agent in many tumor cells. This paper shows that bortezomib induced apoptosis in human hepatoma HepG2 cells associated with many modifications in the expression of survival or death factors. Although bortezomib increased the level of the protective factors HSP70 and HSP27, the effects of the drug that favour cell death were predominant. These events include accumulation of c-Jun, phospho-c-Jun and p53; increase in FasL level with activation of caspase-8; changes related to members of Bcl-2 family with increase in the level of pro-apoptotic members and decrease in that of anti-apoptotic ones; dissipation of mitochondrial potenti…

Cancer ResearchProgrammed cell deathFas Ligand ProteinProto-Oncogene Proteins c-junClinical BiochemistryPharmaceutical ScienceAntineoplastic AgentsApoptosisCaspase 8Cell LineBortezomibHsp27Cell Line TumormedicineHumansMitogen-Activated Protein Kinase 8Protease InhibitorsAP1Heat-Shock ProteinsPharmacologyCaspase 8Membrane GlycoproteinsbiologyJNK.Bortezomibc-JunLiver NeoplasmsBiochemistry (medical)c-junhepatomaCell BiologyapoptosiBoronic AcidsMitochondriaCell biologyTranscription Factor AP-1AP-1 transcription factorLiverProto-Oncogene Proteins c-bcl-2ApoptosisCaspasesPyrazinesTumor Necrosis Factorsbiology.proteinCancer researchProteasome inhibitorSignal Transductionmedicine.drugApoptosis
researchProduct

Midregion PTHrP regulates Rip1 and caspase expression in MDA-MB231 breast cancer cells.

2007

It was previously reported that the midregion PTHrP domain (38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". In addition, we have demonstrated that midregion PTHrP is imported in the nucleoplasm of cultured MDA-MB231 cells, and that "in vitro" it can bind chromatin of metaphase spread preparations and also an isolated 20-mer oligonucleotide, thereby appearing endowed with a putative transcription factor-like DNA-binding ability. Here, we examined whether PTHrP (38-94)-amide was able to modulate the expression of genes e…

Cancer ResearchProgrammed cell deathbcl-X ProteinApoptosisBreast NeoplasmsPTHrP Rip1 caspase breast cancer cellsmedicine.disease_causeTransfectionCell MovementCell Line TumorGene expressionmedicineTranscriptional regulationHumansNeoplasm InvasivenessSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesCaspaseCell ProliferationNucleoplasmbiologyJNK Mitogen-Activated Protein KinasesParathyroid Hormone-Related ProteinRNA-Binding ProteinsOligonucleotides AntisenseMolecular biologyPeptide FragmentsChromatinCell biologyNuclear Pore Complex ProteinsSettore BIO/12 - Biochimica Clinica E Biologia Molecolare ClinicaOncologyApoptosisCaspasesbiology.proteinFemalebcl-Associated Death ProteinCarcinogenesisSignal TransductionBreast cancer research and treatment
researchProduct

Cisplatin sensitivity is related to late DNA damage processing and checkpoint control rather than to the early DNA damage response

2008

The present study aimed at elucidating mechanisms dictating cell death triggered by cisplatin-induced DNA damage. We show that CL-V5B hamster mutant cells, a derivative of V79B, are hypersensitive to cisplatin-induced apoptotic death. CL-V5B cells are characterized by attenuated cisplatin-induced early (2-6 h) stress response, such as phosphorylation of stress-activated protein kinases (SAPK/JNK), ATM and Rad3-related (ATR) protein kinase, histone H2AX and checkpoint kinase-1 (Chk-1). Human FANCC cells also showed a reduced phosphorylation of H2AX and SAPK/JNK at early time point after cisplatin treatment. This was not the case for BRCA2-defective VC-8 hamster cells, indicating that the FA …

Cell cycle checkpointCisplatin-DNA adducts ; DNA repair ; Interstrand cross links ; DNA damage response ; Cell cycle checkpoint ; Cell deathDNA damageDNA repairHealth Toxicology and MutagenesisApoptosisCell LineHistonesDNA AdductsCricetinaeGeneticsmedicineAnimalsHumansCHEK1PhosphorylationMolecular BiologyChromosome AberrationsCisplatinbiologyJNK Mitogen-Activated Protein KinasesDNA replicationG2-M DNA damage checkpointMolecular biologyCell biologyHistonebiology.proteinCisplatinDNA DamageMutagensmedicine.drug
researchProduct

Anandamide-induced apoptosis in Chang liver cells involves ceramide and JNK/AP-1 pathway

2006

In the present study we demonstrate that anandamide, the most important endogenous cannabinoid, markedly induced apoptosis in Chang liver cells, an immortalized non-tumor cell line derived from normal liver tissue, while it induced only modest effects in a number of hepatoma cell lines. The apoptotic effect was reduced by methyl-beta-cyclodextrin, a membrane cholesterol depletor, suggesting an interaction between anandamide and the membrane microdomains named lipid rafts. Anandamide effects were mediated by the production of ceramide, as demonstrated by experiments performed with the sphingomyelinase inhibitor, desipramine, or with the sphingomyelinase activator, melittin. This conclusion w…

CeramideProgrammed cell deathFas Ligand ProteinCell SurvivalPolyunsaturated AlkamidesLiver cytologyp38 mitogen-activated protein kinasesBlotting WesternApoptosisArachidonic AcidsBiologyCeramidesCell LineMembrane Potentialschemistry.chemical_compoundCell Line TumorProto-Oncogene ProteinsGeneticsHumansEnzyme InhibitorsMembrane GlycoproteinsBcl-2-Like Protein 11Dose-Response Relationship DrugDesipramineJNK Mitogen-Activated Protein KinasesMembrane ProteinsFree Radical ScavengersGeneral MedicineAnandamideEndocannabinoid systemAcetylcysteineCell biologyEnzyme ActivationTranscription Factor AP-1cannabinoids apoptosis tumor cells JNK/AP1LiverchemistryApoptosisCaspasesMitochondrial MembranesTumor Necrosis FactorsApoptosis Regulatory ProteinsSphingomyelinEndocannabinoidsSignal TransductionInternational Journal of Molecular Medicine
researchProduct

Interaction of Mitogen-activated Protein Kinases with the Kinase Interaction Motif of the Tyrosine Phosphatase PTP-SL Provides Substrate Specificity …

1999

ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.P…

Cytoplasmanimal structuresProtein Kinase C-alphaRecombinant Fusion ProteinsCèl·lulesNerve Tissue ProteinsProtein tyrosine phosphataseMitogen-activated protein kinase kinaseTransfectionenvironment and public healthBiochemistrySH3 domainReceptor tyrosine kinaseMAP2K7Substrate SpecificitySerineAnimalsc-RafAmino Acid SequenceMolecular BiologyProtein Kinase CSequence DeletionMitogen-Activated Protein Kinase 1Binding SitesMitogen-Activated Protein Kinase 3biologyCyclin-dependent kinase 2Intracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesCell BiologyCyclic AMP-Dependent Protein KinasesIsoenzymesenzymes and coenzymes (carbohydrates)KineticsBiochemistryAmino Acid SubstitutionCOS CellsCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMutagenesis Site-DirectedCyclin-dependent kinase 9CattleMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesProteïnes
researchProduct

Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.

2005

Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (≤2 h after exposure) was similar in cells knockout for ATM, PARP, p53, and CSB or defective in DNA-PKcscompared with wild-type cells. The late response however (≥4 h), was drastically reduced in DNA-PKcsand Cockayne's syndrome B (CSB)-deficient cells. Similar results were obtained with human cells lacking DNA-PKc…

DNA ReplicationAlkylationDNA RepairDNA damageDNA repairPoly ADP ribose polymeraseDNA-Activated Protein KinaseBiologyModels Biologicalchemistry.chemical_compoundMiceAnimalsHumansPhosphorylationPoly-ADP-Ribose Binding ProteinsMolecular BiologyDNA-PKcsCells CulturedKinaseDNA HelicasesJNK Mitogen-Activated Protein KinasesNuclear ProteinsCell BiologyBase excision repairDNAArticlesMethyl MethanesulfonateMolecular biologyMethyl methanesulfonateDNA-Binding ProteinsEnzyme Activationenzymes and coenzymes (carbohydrates)DNA Repair EnzymeschemistryPhosphorylationProtein Processing Post-TranslationalDNA DamageMutagensSignal TransductionMolecular biology of the cell
researchProduct

The ambivalent action of the anti-cancer agent 5-Fluorouracil on myeloid derived suppressor cells under control of docosahexaenoic acid : Role of NLR…

2018

A limitation to 5-Fluorouracil (5-FU) anti-cancer efficacy relies on the secretion of IL-1β by myeloid-derived suppressor cells (MDSC) according to a previous pre-clinical report. The release of mature IL-1β originates from 5 FU mediated NLRP3 activation with increased caspase-1 activity in MDSC and sustains tumor growth recovery in 5 FU treated mice. Docosahexaenoic acid (DHA) belongs to omega-3 fatty acid family and harbors both anti cancer and anti inflammatory properties which might could improve 5 FU chemotherapy. Here, we demonstrate that DHA inhibits 5 FU induced IL 1β secretion produced by a MDSC cell line (MSC-2). In tumor-bearing mice treated with 5 FU, we showed that a DHA enrich…

Dha5 fluorouracil[SDV.MHEP.PHY] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]5-FluorouracilMdscIL-1 betaJnkIL-1beta
researchProduct

PED Mediates AKT-Dependent Chemoresistance in Human Breast Cancer Cells

2005

Abstract Killing of tumor cells by cytotoxic therapies, such as chemotherapy or gamma-irradiation, is predominantly mediated by the activation of apoptotic pathways. Refractoriness to anticancer therapy is often due to a failure in the apoptotic pathway. The mechanisms that control the balance between survival and cell death in cancer cells are still largely unknown. Tumor cells have been shown to evade death signals through an increase in the expression of antiapoptotic molecules or loss of proapoptotic factors. We aimed to study the involvement of PED, a molecule with a broad antiapoptotic action, in human breast cancer cell resistance to chemotherapeutic drugs–induced cell death. We show…

EXPRESSIONAdultCancer ResearchProgrammed cell deathmedicine.medical_treatmentINHIBITIONApoptosisBreast NeoplasmsProtein Serine-Threonine KinasesDNA AntisenseACTIVATIONBreast cancerTransduction GeneticCell Line TumorProto-Oncogene ProteinsComplementary DNAmedicineHumansCytotoxic T cellPROTEIN-KINASE-CProtein kinase BAgedNeoplasm StagingChemotherapybusiness.industryDEATHIntracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesIN-VITROCHEMOTHERAPYMiddle AgedPhosphoproteinsmedicine.diseasePED/PEA-15Up-RegulationEnzyme ActivationOncologyDrug Resistance NeoplasmApoptosisCancer cellImmunologyCancer researchFemalePTEN GENEApoptosis Regulatory ProteinsbusinessProto-Oncogene Proteins c-aktCancer Research
researchProduct

Role of Gadd45a in Wip1-dependent regulation of intestinal tumorigenesis.

2012

Conversion of intestinal stem cells into tumor-initiating cells is an early step in Apc(Min)-induced polyposis. Wild-type p53-induced phosphatase 1 (Wip1)-dependent activation of a DNA damage response and p53 has a permanent role in suppression of stem cell conversion, and deletion of Wip1 lowers the tumor burden in Apc(Min) mice. Here we show that cyclin-dependent kinase inhibitor 2a, checkpoint kinase 2, and growth arrest and DNA damage gene 45a (Gadd45a) exert critical functions in the tumor-resistant phenotype of Wip1-deficient mice. We further identified Gadd45a as a haploinsufficient gene in the regulation of Wip1-dependent tumor resistance in mice. Gadd45a appears to function through…

Genes APCDNA RepairDNA repairDNA damageApoptosisCell Cycle ProteinsBiologyProtein Serine-Threonine KinasesReceptors G-Protein-CoupledMicePhosphoprotein PhosphatasesGene silencingAnimalsMolecular BiologyCheckpoint Kinase 2Cyclin-Dependent Kinase Inhibitor p16beta CateninMice KnockoutOriginal PaperKinaseIntestinal PolyposisStem CellsJNK Mitogen-Activated Protein KinasesNuclear ProteinsCell BiologyCell biologyProtein Phosphatase 2CCheckpoint Kinase 2Cell Transformation NeoplasticCancer researchSignal transductionStem cellTumor Suppressor Protein p53GADD45ASignal TransductionCell death and differentiation
researchProduct