Search results for "Jordan"
showing 10 items of 59 documents
Polynomimatriisit
2014
Tämän tutkielman sisältö voidaan karkeasti jakaa kahteen osaan. Ensimmäisessä on tarkoituksena tarkastella polynomimatriiseja ja erityisesti osoittaa toimiviksi kaksi niiden muokkaamiseen soveltuvaa algoritmia. Algoritmit toimivat osittain samalla idealla kuin lineaarialgebran perusteista tuttu Gaussin ja Jordanin menetelmä. Polynomit tuovat menetelmiin kuitenkin uutta sisältöä erityisesti jaollisuusominaisuuksiensa vuoksi. Tarkasteltavat matriisit ovat aina neliömatriiseja, ja polynomien kerroinkunnan karakteristika oletetaan nollaksi. Ensimmäinen algoritmi osoittaa, että Gaussin menetelmän polynomimatriiseille yleistetyillä rivioperaatioilla voidaan aina muokata polynomimatriisi yläkolmio…
Finite-dimensional non-associative algebras and codimension growth
2011
AbstractLet A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded.Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One…
A note on cocharacter sequence of Jordan upper triangular matrix algebra
2016
Let UJn(F) be the Jordan algebra of n × n upper triangular matrices over a field F of characteristic zero. This paper is devoted to the study of polynomial identities satisfied by UJ2(F) and UJ3(F). In particular, the goal is twofold. On one hand, we complete the description of G-graded polynomial identities of UJ2(F), where G is a finite abelian group. On the other hand, we compute the Gelfand–Kirillov dimension of the relatively free algebra of UJ2(F) and we give a bound for the Gelfand–Kirillov dimension of the relatively free algebra of UJ3(F).
Tongue lesions in a Jordanian population. Prevalence, symptoms, subject's knowledge and treatment provided.
2010
Tongue lesions constitute a considerable proportion of oral mucosal lesions, and are health concern to both oral health care providers and public. Objectives: The aim of this study was to determine the prevalence of tongue lesions and conditions among a group of Jordanian population attending dental clinics, in addition to assessment of their symptoms, knowledge, and treatment provided for their tongue lesions. Study design: A total of 2000 dental out-patients were screened for tongue lesions. Results: Fissured tongue was the most common tongue lesion diagnosed in 11.5% of the subjects, followed by coated tongue (8.2%), geographic tongue (4.8%), hairy tongue (2.4%) and median rhomboid gloss…
On the Rational Homogeneous Manifold Structure of the Similarity Orbits of Jordan Elements in Operator Algebras
1991
Considering a topological algebra B with unit e, an open group of invertible elements B −1 and continuous inversion (e. g. B = Banach algebra, B = C∞(Ω, M n (ℂ)) (Ω smooth manifold), B = special algebras of pseudo-differential operators), we are going to define the set of Jordan elements J ⊂ B (such that J = Set of Jordan operators if B = L(H), H Hilbert space) and to construct rational local cross sections for the operation mapping $$ {B^{ - 1}} \mathrel\backepsilon g \mapsto gJ{g^{ - 1}} $$ of B −1 on the similarity orbit S(J):= {gJg −1: g Є B −1}, J Є J.
Kvasikonveksisuus tasossa
2009
Specht property for some varieties of Jordan algebras of almost polynomial growth
2019
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Interior Eigenvalue Density of Jordan Matrices with Random Perturbations
2017
International audience; We study the eigenvalue distribution of a large Jordan block subject to a small random Gaussian perturbation. A result by E. B. Davies and M. Hager shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle.We study the expected eigenvalue density of the perturbed Jordan block in the interior of that circle and give a precise asymptotic description.; Nous étudions la distribution de valeurs propres d’un grand bloc de Jordan soumis à une petite perturbation gaussienne aléatoire. Un résultat de E. B. Davies et M. Hager montre que quand la dimension de la matrice devient grande, alors avec probabilité…
Nei luoghi di confine. Architettura e progetto in Giordania / In border places. Architecture and project in Jordan
2015
Alcuni luoghi possiedono una ricchezza specifica, una sorta di privilegio. Contengono, infatti, fessure impreviste, varchi nascosti che si celano dentro episodi di riconosciuta bellezza, preziose soglie d’accesso ai significati metafisici e metastorici della forma. Così il deserto di Giordania è metafora dell’attraversamento che può farci distinguere le condizioni estetiche più radicali dell’abitare. Le città, disperse e lentamente germogliate nel deserto, sono baluardi di malinconica speranza posti a rimarcare la supremazia dell’artificio sul destino naturale dei luoghi. Le architetture, soprattutto quelle inscritte nelle strutture archeologiche di Petra e di Jerash, permettono ancora oggi…
Algebras with involution with linear codimension growth
2006
AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.