Search results for "Kerr"

showing 10 items of 494 documents

Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

2015

Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demag…

Magnetization dynamicsKerr effectMaterials scienceAcoustics and UltrasonicsCondensed matter physicsBand gapDemagnetizing fieldPhysics::OpticsFermi energyElectronic structureCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismCondensed Matter::SuperconductivityThin filmJournal of Physics D: Applied Physics
researchProduct

Reorientation of magnetization states in Fe-nanostripe arrays on stepped W(110) caused by adsorption of CO, H2 and O2

1999

Abstract Fe-Nanostripe arrays of alternating double layer (DL) and monolayer (ML) stripes were grown on stepped W(1 1 0) surfaces by MBE. Magnetic properties were measured in situ in UHV using the polar and longitudinal magneto-optical Kerr effect (MOKE) during exposure to CO, H2 and O2. The longitudinal Kerr signal increases and the polar signal decreases with increasing exposure of all three gases. A sudden onset of perpendicular remanence was observed at exposures characteristic for each particular gas.

MagnetizationMagnetic anisotropyMaterials scienceKerr effectCondensed matter physicsMagneto-optic Kerr effectRemanenceMonolayerPolarCondensed Matter PhysicsMicromagneticsElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

The Clip Approach : A Visual Methodology to Support the (Re)Construction of Life Narratives

2021

Major life changes may cause an autobiographical rupture and a need to work on one’s narrative identity. This article introduces a new qualitative interview methodology originally developed to facilitate 10 prostate cancer patients and five spouses in the (re)creation of their life narratives in the context of a series of interventive interviews conducted over a timespan of several months. In “The Clip Approach” the interviewees’ words, phrases, and metaphors are reflected back in a physical form (“the Clips”) as visual artifacts that allow the interviewees to re-enter and re-consider their experience and life and re-construct their narratives concerning them. Honoring the interviewees as …

Male050103 clinical psychologypsychosocial support methodpuolisotvisual artifactinterventive interviewomaelämäkerrallisuusIllness experienceNarrative identityautobiographical reasoningnarrative-hermeneutic method050105 experimental psychologyinterview methodologyautobiographical rupturenarratiivinen tutkimusMethodsHumanssairaudet0501 psychology and cognitive sciencesNarrativeidentiteettiVisual artifactelämänhistoriaProblem SolvingFinlandNarrationillness experienceeturauhassyöpäQualitative interviewsnarrative identity05 social sciencesmetodologiaPublic Health Environmental and Occupational Healthpsykososiaalinen tukielämäkertatutkimusSurgical Instrumentsprostate cancerspouselife narrativenarratiivisuusWork (electrical)SpousequalitativekokemuksetPsychologyhaastattelututkimusSocial psychology
researchProduct

Omaelämäkerrallisen "minän" kaipuu yhteyteen ja omaan haluun : kahden teinitytön subjektiusesityksiä

1998

Marttila SatuomaelämäkertatutkimustyttökulttuuriKoskimies SatuEskola KatarinanaissubjektiHaavio Katarinatoimijuuspäiväkirjatomaelämäkerrallinen subjekti
researchProduct

Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films

2020

Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO.

Materials scienceAnalytical chemistrynickel oxide02 engineering and technologyChemical vapor depositionConductivity01 natural scienceschemical vapor depositionAtomic layer deposition0103 physical scienceslcsh:TA401-492AntiferromagnetismThin film010302 applied physicslcsh:T58.5-58.64kemialliset reaktiotkemialliset ilmiötlcsh:Information technologyNickel oxidesolution depositionatomikerroskasvatus021001 nanoscience & nanotechnologyeye diseasesthin filmsatomic layer depositionlcsh:Materials of engineering and construction. Mechanics of materialssense organsohutkalvot0210 nano-technologyInfoMat
researchProduct

Atomic layer deposition of Ti-Nb-O thin films onto electrospun fibers for fibrous and tubular catalyst support structures

2018

Here, the authors report on the preparation of core-shell carbon-ceramic fibrous as well as ceramic tubular catalyst supports utilizing electrospinning and atomic layer deposition (ALD). In this paper, ALD of Ti-Nb-O thin films using TiCl4, Nb(OEt)5, and H2O as precursors is demonstrated. According to the time-of-flight-elastic recoil detection analysis and Rutherford backscattering spectrometry, carbon and hydrogen impurities were relatively low, but depend on the pulsing ratio of the precursors. Optimized ALD process was used for coating of sacrificial electrospun polyvinyl alcohol (PVA) template fibers to yield tubular Ti-Nb-O structures after thermal or solution based PVA removal. Anoth…

Materials scienceCatalyst supportelectrospun fibers02 engineering and technologyThermal treatmentengineering.materialsupport structures010402 general chemistry01 natural scienceschemistry.chemical_compoundAtomic layer depositionCoatingThin filmta216ta114PolyacrylonitrileSurfaces and Interfacesatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicsRutherford backscattering spectrometryElectrospinningfibrous and tubular catalyst0104 chemical sciencesSurfaces Coatings and Filmsthin filmschemistryChemical engineeringatomic layer depositionengineeringohutkalvot0210 nano-technologyJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
researchProduct

Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magne…

2017

We investigate the role of top and bottom interfaces in inversion symmetry-breaking Pt/Co/AlOx systems by inserting ultra-thin Cu layers. Wedge-type ultrathin Cu layers (0-0.5 nm) are introduced between Pt/Co or Co/AlOx interfaces. Interface sensitive physical quantities such as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) energy density, the interfacial perpendicular magnetic anisotropy (iPMA), and the magneto-optical Kerr effects (MOKE) are systematically measured as a function of Cu-insertion layer thickness. We find that the Cu-insertion layer in the bottom interface (Pt/Co) plays a more important role in iDMI, PMA, and MOKE. In contrast, the top interface (Co/AlOx) noticeab…

Materials scienceCondensed matter physicsPerpendicular magnetic anisotropyGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLayer thicknessCopperlcsh:QC1-999chemistryMagneto-optic Kerr effect0103 physical sciencesEnergy densityInteraction interface010306 general physics0210 nano-technologyPlatinumCobaltlcsh:Physics
researchProduct

Reaction pathways for atomic layer deposition with lithium hexamethyl disilazide, trimethyl phosphate, and oxygen plasma

2020

Atomic layer deposition (ALD) of lithium-containing films is of interest for the development of next-generation energy storage devices. Lithium hexamethyl disilazide (LiHMDS) is an established precursor to grow these types of films. The LiHMDS molecule can either be used as a single-source precursor molecule for lithium or as a dual-source precursor molecule for lithium and silicon. Single-source behavior of LiHMDS is observed in the deposition process with trimethylphosphate (TMP) resulting in the deposition of crystalline lithium phosphate (Li3PO4). In contrast, LiHMDS exhibits dual-source behavior when combined with O2 plasma, resulting in a lithium silicate. Both processes were characte…

Materials scienceInorganic chemistryReaction productschemistry.chemical_elementEnergy storageCoatings and FilmsPlasmaAtomic layer depositionchemistry.chemical_compoundElectronicOptical and Magnetic MaterialsPhysical and Theoretical ChemistryOXIDESPrecursorsALUMINUM PHOSPHATEMoleculesatomikerroskasvatusSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTrimethyl phosphateSurfacesChemistryGeneral EnergylitiumchemistryOxygen plasmaLithiumAdsorptionohutkalvotALUMINUM PHOSPHATE
researchProduct

Phosphites as precursors in atomic layer deposition thin film synthesis

2021

We here demonstrate a new route for deposition of phosphorous based materials by atomic layer deposition (ALD) using the phosphites Me3PO3 or Et3PO3 as precursors. These contain phosphorous in the oxidation state (III) and are open for deposition of reduced phases by ALD. We have investigated their applicability for the synthesis of LiPO and AlPO materials and characterized their growth by means of in situ quartz crystal microbalance. Phosphites are good alternatives to the established phosphate-based synthesis routes as they have high vapor pressure and are compatible with water as a coreactant during deposition. The deposited materials have been characterized using XPS, x-ray fluorescence…

Materials scienceIon beam analysisfosfaatitVapor pressureSurfaces and InterfacesQuartz crystal microbalanceatomikerroskasvatusCondensed Matter PhysicsSurfaces Coatings and FilmsAtomic layer depositionX-ray photoelectron spectroscopyChemical engineeringfosfiititOxidation stateDeposition (phase transition)ohutkalvotThin film
researchProduct

Kerr beam self-cleaning in the telecom band

2019

Multimode graded index (GRIN) fibers received a renewed interest in recent years, in particular for the development of new laser sources [1]. In many cases, the use of GRIN fibers is limited by multimodal propagation, leading to a spatially modulated intensity distribution (speckles) at the fiber output. Recent studies have found that quasi-single mode propagation can be recovered in GRIN fibers by the so-called Kerr self-cleaning effect [2]. It consists in the spontaneous recovery of the spatial beam quality, without any frequency shift [2] (as opposed to, e.g., Raman beam self-cleaning [3]). This nonlinear process was only observed so far at laser wavelengths around 1 μm, for peak power l…

Materials scienceKerr effect02 engineering and technologyKerr effect; multimode fibers; transverse effects01 natural scienceslaw.invention010309 opticssymbols.namesakelaw0103 physical sciencesFiber[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSMulti-mode optical fiberbusiness.industry021001 nanoscience & nanotechnologyLaserWavelengthsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicLaser beam quality0210 nano-technologyTelecommunicationsbusinessRaman scatteringBeam (structure)
researchProduct