Search results for "LASER"

showing 10 items of 3161 documents

Experimental evidence on photo-assisted O− ion production from Al2O3 cathode in cesium sputter negative ion source

2020

The production of negative ions in cesium sputter ion sources is generally considered to be a pure surface process. It has been recently proposed that ion pair production could explain the higher-than-expected beam currents extracted from these ion sources, therefore opening the door for laser-assisted enhancement of the negative ion yield. We have tested this hypothesis by measuring the effect of various pulsed diode lasers on the O − beam current produced from Al 2O 3 cathode of a cesium sputter ion source. It is expected that the ion pair production of O − requires populating the 5d electronic states of neutral cesium, thus implying that the process should be provoked only with specific …

010302 applied physicsMaterials scienceGeneral Physics and Astronomy02 engineering and technologyPhoton energy021001 nanoscience & nanotechnologyLaser01 natural sciencesCathodeIon sourceIonlaw.inventionPhysics::Plasma PhysicslawSputtering0103 physical sciencesAtomic physics0210 nano-technologyBeam (structure)DiodeJournal of Applied Physics
researchProduct

Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography

2019

The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser …

010302 applied physicsMaterials scienceLaser scanningField (physics)Laser thermographyMechanical EngineeringAcousticsNon-destructive testingchemistry.chemical_elementLaser01 natural sciencesIR thermographylaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinechemistryMechanics of MaterialsAluminiumlaw0103 physical sciencesSolid mechanicsThermographyEmissivityHead (vessel)Thermal analysis010301 acousticsJournal of Nondestructive Evaluation
researchProduct

Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study

2020

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…

010302 applied physicsMaterials scienceMaterials processingTandemMechanical EngineeringSteel structures02 engineering and technologyWelding021001 nanoscience & nanotechnologyLaser01 natural sciencesFinite element methodGas metal arc weldinglaw.inventionlaw0103 physical sciencesGeneral Materials ScienceComposite material0210 nano-technologyProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Vapor plume and melted zone behavior during dissimilar laser welding of titanium to aluminum alloy

2020

The present study deals with continuous Yb:YAG laser welding of pure titanium to aluminum alloy A5754 performed with different beam offsets to the joint line. Spectroscopic and morphological characterization of vapor plume exiting the keyhole was combined with post-mortem observation and energy-dispersive X-ray spectroscopy (EDX) analysis of the welds. The laser beam centered on the joint line resulted in periodic transversal inclination of a vapor jet on the aluminum side associated with a local increase of melt width and an intense spatter formation. Such behavior can be attributed to the instability of the keyhole wall from the aluminum side. The beam offset on the titanium side led to …

010302 applied physicsMaterials scienceMechanical EngineeringMetallurgyAlloychemistry.chemical_elementLaser beam welding02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyLaser01 natural sciencesPlumelaw.inventionchemistryAluminiumlawJoint line0103 physical sciencesengineeringGeneral Materials Science0210 nano-technologyBeam (structure)TitaniumProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Stable and simple quantitative phase-contrast imaging by Fresnel biprism

2018

Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the be…

010302 applied physicsMaterials scienceMicroscopePhysics and Astronomy (miscellaneous)business.industryPhase-contrast imagingHolographyÒpticaLaserInterference (wave propagation)Holographic interferometry01 natural scienceslaw.invention010309 opticsOptical axisMicroscòpiaOpticslaw0103 physical sciencesMicroscopybusinessApplied Physics Letters
researchProduct

B-Scan image analysis for position and shape defect definition in plates

2016

Definition of size, shape and location of defects into a mechanical component is of extreme importance in the manufacturing industry in general and particularly in high-tech applications, and in applications that can become dangerous due to the structural failure of mechanical components. In this paper, a laser-UT system has been used to define position and shape of internal defects in aluminum plates. An infrared pulsed laser is used to generate ultrasonic waves in a point of the plate and a CW laser interferometer is used as receiver to acquire the out-of-plane displacements due to the ultrasonic waves in another point of the plate. The method consists of acquiring a B-Scan map on which s…

010302 applied physicsMaterials scienceNDEbusiness.industryAcousticsCw laser01 natural sciencesMechanical componentsImage (mathematics)InterferometryVirtual imagePosition (vector)defect definitionLaser Ultrasonic0103 physical sciencesPoint (geometry)Computer visionUltrasonic sensorArtificial intelligencebusiness010301 acousticsB-scan image analysi
researchProduct

Optimization of a laser ion source for $^{163}$Ho isotope separation

2019

To measure the mass of the electron neutrino, the “Electron Capture in Holmium-163” (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation…

010302 applied physicsMaterials sciencePhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Electron captureFOS: Physical sciencesThermal ionizationInstrumentation and Detectors (physics.ins-det)Laser01 natural sciencesIon source010305 fluids & plasmasIsotope separationlaw.inventionPhysics - Atomic PhysicslawIonization0103 physical sciencesThermalAtomic physicsChemical equilibriumInstrumentation
researchProduct

Application of enthalpy model for floating zone silicon crystal growth

2017

Abstract A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the pol…

010302 applied physicsMaterials scienceTriple pointPhysics::OpticsCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsInorganic ChemistryCrystalMonocrystalline siliconCrystallographyCondensed Matter::Superconductivity0103 physical sciencesMaterials ChemistryLaser-heated pedestal growthCrystalliteGrowth rate0210 nano-technologySeed crystalJournal of Crystal Growth
researchProduct

A new Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA).

2020

We present a new collinear laser spectroscopy setup that has been designed to overcome systematic uncertainty limits arising from high-voltage and frequency measurements, beam superposition, and collisions with residual gas that are present in other installations utilizing this technique. The applied methods and experimental realizations are described, including an active stabilization of the ion-source potential, new types of ion sources that have not been used for collinear laser spectroscopy so far, dedicated installations for pump-and-probe measurements, and a versatile laser system referenced to a frequency comb. The advanced setup enables us to routinely determine transition frequenci…

010302 applied physicsMaterials sciencebusiness.industryLaserResidual01 natural sciences010305 fluids & plasmasIonlaw.inventionMetrologyFrequency combSuperposition principleOpticslaw0103 physical sciencesSpectroscopybusinessInstrumentationBeam (structure)The Review of scientific instruments
researchProduct

Guiding and splitting Lamb waves in coupled-resonator elastic waveguides

2018

Abstract We investigate experimentally Lamb wave propagation in coupled-resonator elastic waveguides (CREWs) formed by a chain of cavities in a two-dimensional phononic crystal slab with cross holes. Wide complete bandgaps, extending from 53 to 88 kHz, are first measured in a finite phononic crystal slab sample. A straight waveguide and a wave splitting circuit with 90° bends are then designed, fabricated and measured. Elastic Lamb waves are excited by a piezoelectric patch attached to one side of the phononic slab and detected using a scanning vibrometer. Strongly confined guiding and splitting at waveguide junctions are clearly observed for several guided waves. Numerical simulations are …

010302 applied physicsMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricitylaw.inventionCrystalResonatorLamb wavesOpticslaw0103 physical sciencesDispersion (optics)Ceramics and CompositesSlab0210 nano-technologybusinessLaser Doppler vibrometerWaveguideCivil and Structural EngineeringComposite Structures
researchProduct