Search results for "LD"
showing 10 items of 41748 documents
Object size effect on the contact potential difference measured by scanning Kelvin probe method
2010
International audience; Contact potential difference (CPD) was measured by macroscopic Kelvin probe instrument and scanning Kelvin probe microscope on Al, Ni and Pt on ITO substrates at ambient conditions. CPD values measured by scanning Kelvin probe microscope and macroscopic Kelvin probe are close within the error of about 10-30% for large studied objects, whereas scanning Kelvin probe microscope signal decreases, when the object size becomes smaller than 1.4 m. CPD and electric field signals measured using many-pass technique allowed us to estimate the influence of electrostatic field disturbance, especially, in the case of small objects.
New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.
2010
Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…
Exploring the transport properties of equatorially low coordinated erbium single ion magnets
2019
Single-molecule spin transport represents the lower limit of miniaturization of spintronic devices. These experiments, although extremely challenging, are key to understand the magneto-electronic properties of a molecule in a junction. In this context, theoretical screening of new magnetic molecules provides invaluable knowledge before carrying out sophisticated experiments. Herein, we investigate the transport properties of three equatorially low-coordinated erbium single ion magnets with C3v symmetry: Er[N(SiMe3)2]3 (1), Er(btmsm)3 (2) and Er(dbpc)3 (3), where btmsm=bis(trimethylsilyl)methyl and dbpc=2,6-di-tert-butyl-p-cresolate. Our ligand field analysis, based on previous spectros…
Space charge accumulation in undersea HVDC cables as function of heat exchange conditions at the boundaries – water-air interface
2020
Transmission lines with undersea HVDC cables are an interesting technological solution for the supply of electrical energy to islands. The accumulation of space charge inside the dielectric layer of a HVDC cable is one of the most important element to consider in its design and during operation. The formation of space charge is due to various factors including the high dependence on the temperature of the electrical conductivity of the insulation and the establishment of a thermal gradient under load conditions. This research is focused on the space charge accumulation phenomenon around a section of a HVDC cable half dipped in water and half in air. Due to the high difference in thermal con…
Quantitative analysis of magnetization reversal in Ni thin films on unpoled and poled (0 1 1) [PbMg1/3Nb2/3O3]0.68–[PbTiO3]0.32piezoelectric substrat…
2016
The field angle dependence of the magnetization reversal in 20 nm thick polycrystalline Ni films grown on piezoelectric (0 1 1) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates is analysed quantitatively to study the magnetic anisotropy induced in the film by poling the piezosubstrate. While the PMN-PT is in the unpoled state, the magnetization reversal is almost isotropic as expected from the polycrystalline nature of the film and corresponding to an orientation ratio (OR) of 1.2. The orientation ratio is obtained by fitting the angular dependence of normalized remanent magnetization to an adapted Stoner-Wohlfarth relation. Upon poling the piezosubstrate, a strong uniaxial anisotr…
Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3
2017
This work has been supported by the National Research Program in the framework of the project “Multifunctional Materials and composites, photonics and nanotechnology (IMIS2).”
An anomalous wave formation at the Al/Cu interface during magnetic pulse welding
2020
This paper reports an anomalous wave formation at an Al/Cu bimetallic interface produced by magnetic pulse welding. The mechanism of the anomalous wave formation is investigated using both metallurgical characterization and the interface kinematics. It reveals that the anomalous wave is formed with the combination of the intermediate zone and the interdiffusion zone with a thickness of 70 nm, wherein the intermediate zone is caused by the local melting due to the high shear instability, and the interdiffusion zone is formed below the melting point of aluminum combined with ultrahigh heating and cooling rates of about 10^13 °C s^−1. A multiphysics simulation of impact welding has been perfor…
Influence of magnetization on the applied magnetic field in various AMR regenerators
2017
International audience; The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders are considered, using a numerical model. Gadolinium is chosen as magnetic material for the sample, due to its strong magnetocaloric properties and its wide use in magnetic refrigeration prototypes. We find that using uniform theoretical demagnetizing factors for cylinders or spheres results in a deviation of less than 2% in the calculation of internal magnetic fields at temperatu…
How activator ion concentration affects spectroscopic properties on Ba4Y3F17: Er3+, Yb3+, a new perspective up-conversion material
2018
Abstract Ba4Y3F17 with Er3+ and Yb3+, a promising material for up-conversion luminescence, was synthesized. Excellent isomorphic capacity was detected. Low-temperature measurements show that erbium ions are incorporated in multiple lattice positions, which is inconsistent with the current model of Ba4Y3F17 crystal lattice structure. Activator ion concentration has a different impact on 4S3/2 and 4F9/2, states (for the green and red luminescence, respectively) depopulation. Energy transfer from Er3+ 4S3/2 state to Yb3+ is observed even at low temperature (15 K) while Er-Er cross-relaxation is observed from 120 K and above. Yb3+ concentration has a great impact to red-to-green up-conversion l…
Experimental and numerical investigation on a new FSW based metal to composite joining technique
2018
Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…