Search results for "La Protein"

showing 10 items of 245 documents

Genetic and Chemical Modifiers Of A CUG Toxicity Model in Drosophila

2007

Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and furthe…

congenital hereditary and neonatal diseases and abnormalitiesGene Dosagelcsh:MedicineRNA-binding proteinBiologyEyechemistry.chemical_compoundTrinucleotide RepeatsAnimalsDrosophila ProteinsMyotonic DystrophyMBNL1lcsh:ScienceGeneGenetics and Genomics/Genetics of DiseaseGeneticsMessenger RNADNA Repeat ExpansionMultidisciplinaryAlternative splicinglcsh:RBrainNuclear ProteinsRNA-Binding ProteinsRNAPhenotypeCell biologyDisease Models AnimalGenetics and Genomics/Disease ModelschemistryRNA splicingDrosophilalcsh:QGenèticaResearch Article
researchProduct

Expression of hMLH1 and hMSH2 proteins in ameloblastomas and tooth germs

2017

Background Mismatch repair proteins (MMRPs) are a group of nuclear enzymes that participate in the repair of base mismatches that occur during DNA replication in all proliferating cells. The most studied MMRPs are hMSH2 and hMLH1, which are known to be highly expressed in normal tissues. A loss of MMRPs leads to the accumulation of DNA replication errors in proliferating cells. Ki-67 is a biomarker regarded to be the gold-standard tool for determining cell proliferation by immunohistochemical methods. The aim of this study was to investigate the immunohistochemical expression of hMLH1, hMSH2 and Ki-67 proteins in ameloblastomas and tooth germs, to contribute to the understanding of the deve…

congenital hereditary and neonatal diseases and abnormalitiesPathologymedicine.medical_specialtyhMSH2hMLH1Ameloblastoma03 medical and health sciencesTooth germsGERMEN DENTARIO0302 clinical medicinemedicineHumansHOMOLOGO 1 DE LA PROTEINA MutL (1)AmeloblastomaGeneral DentistryTooth GermsOral Medicine and PathologyAmeloblastomasbiologyCell growthResearchDNA replicationTooth Germnutritional and metabolic diseases030206 dentistry:CIENCIAS MÉDICAS [UNESCO]medicine.diseaseImmunohistochemistryJaw NeoplasmsANTIGENO Ki-67PROTEINA 2 HOMOLOGA a MutS (1)digestive system diseasesKi-67 AntigenMutS Homolog 2 ProteinAMELOBLASTOMAOtorhinolaryngology030220 oncology & carcinogenesisKi-67UNESCO::CIENCIAS MÉDICASbiology.proteinKi-67Biomarker (medicine)ImmunohistochemistrySurgeryDNA mismatch repairMutL Protein Homolog 1Medicina Oral Patología Oral y Cirugia Bucal
researchProduct

Correction: Daunorubicin reduces MBNL1 sequestration caused by CUG-repeat expansion and rescues cardiac dysfunctions in a Drosophila model of myotoni…

2018

ABSTRACT Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder caused by expression of mutant myotonin-protein kinase (DMPK) transcripts containing expanded CUG repeats. Pathogenic DMPK RNA sequesters the muscleblind-like (MBNL) proteins, causing alterations in metabolism of various RNAs. Cardiac dysfunction represents the second most common cause of death in DM type 1 (DM1) patients. However, the contribution of MBNL sequestration in DM1 cardiac dysfunction is unclear. We overexpressed Muscleblind (Mbl), the Drosophila MBNL orthologue, in cardiomyocytes of DM1 model flies and observed a rescue of heart dysfunctions, which are characteristic of these model flies and resem…

congenital hereditary and neonatal diseases and abnormalitiesRNA StabilityNeuroscience (miscellaneous)Medicine (miscellaneous)MuscleblindGeneral Biochemistry Genetics and Molecular BiologyImmunology and Microbiology (miscellaneous)AnimalsDrosophila ProteinsMyotonic DystrophyMyocytes CardiacRNA MessengerDaunorubicinCorrectionNuclear ProteinsReproducibility of ResultsHeartSurvival AnalysisAlternative SplicingDisease Models AnimalDrosophila melanogasterTrinucleotide repeat disorderDrosophilaTrinucleotide Repeat ExpansionResearch ArticleProtein BindingDisease Models & Mechanisms
researchProduct

Expression of neurotrophins, GDNF, and their receptors in rat thyroid tissue

1999

Levels of mRNA for neurotrophins (brain-derived neurotrophic factor, BDNF; neurotrophin 3, NT-3; neurotrophin 4, NT-4) and their receptors (trkA, trkB, trkC) and for glial cell line-derived neurotrophic factor (GDNF) and its receptors (ret, GDNFR-alpha) were measured in rat thyroid tissue by ribonuclease protection assays. In thyroid tissue the NT-3 mRNA level was threefold lower and the NT-4 mRNA level sixfold higher than those detected in adult rat hippocampus, while BDNF mRNA was undetectable. Very low levels of mRNA for truncated trkB and trkC receptors and no catalytic trkA, trkB or trkC were found. In conclusion NT-3 and NT-4, but not the corresponding functional receptors, are expres…

endocrine systemmedicine.medical_specialtyGlial Cell Line-Derived Neurotrophic Factor ReceptorsHistologyendocrine system diseasesThyroid GlandGene ExpressionNerve Tissue ProteinsReceptors Nerve Growth FactorNeurotrophin-3Tropomyosin receptor kinase AFollicular cellPathology and Forensic MedicineNeurotrophin 3Proto-Oncogene ProteinsInternal medicinemedicineGlial cell line-derived neurotrophic factorAnimalsDrosophila ProteinsHumansLow-affinity nerve growth factor receptorReceptor trkCGlial Cell Line-Derived Neurotrophic FactorNerve Growth FactorsRNA MessengerReceptor trkAReceptor Ciliary Neurotrophic FactorbiologyBrain-Derived Neurotrophic FactorProto-Oncogene Proteins c-retReceptor Protein-Tyrosine KinasesCell BiologyRatsCell biologyEndocrinologynervous systemProto-Oncogene Proteins c-retbiology.proteinGDNF family of ligandsNeurotrophinCell and Tissue Research
researchProduct

Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling

2015

Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

genetic structuresScienceNerve Tissue ProteinsEyeTranscription (biology)ddc:570AnimalsDrosophila ProteinsReceptorTranscription factorCell ProliferationJanus KinasesGeneticsMultidisciplinarybiologyCell growthQRbiology.organism_classificationCell biologySTAT Transcription FactorsDrosophila melanogasterEye developmentMedicineDrosophila melanogasterJanus kinaseT-Box Domain ProteinsDrosophila ProteinResearch ArticleTranscription Factors
researchProduct

A luminal glycoprotein drives dose-dependent diameter expansion of the Drosophila melanogaster hindgut tube

2012

An important step in epithelial organ development is size maturation of the organ lumen to attain correct dimensions. Here we show that the regulated expression of Tenectin (Tnc) is critical to shape the Drosophila melanogaster hindgut tube. Tnc is a secreted protein that fills the embryonic hindgut lumen during tube diameter expansion. Inside the lumen, Tnc contributes to detectable O-Glycans and forms a dense striated matrix. Loss of tnc causes a narrow hindgut tube, while Tnc over-expression drives tube dilation in a dose-dependent manner. Cellular analyses show that luminal accumulation of Tnc causes an increase in inner and outer tube diameter, and cell flattening within the tube wall,…

glycoproteinCancer ResearchhindgutOrganogenesis[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritiontenectinHydrostatic pressureExtracellular matrixlumenMolecular Cell BiologyMorphogenesisDrosophila Proteinslumen;hindgut;tenectin;epithelial tube;glycoproteinGenetics (clinical)Animal biologyExtracellular Matrix ProteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalHindgutAnimal ModelsAnatomymusculoskeletal systemExtracellular MatrixCell biologymedicine.anatomical_structureAlimentation et NutritionResearch Articleepithelial tubelcsh:QH426-470MorphogenesisLumen (anatomy)BiologyModel OrganismsGenetic MutationBiologie animaleGeneticsmedicineAnimalsFood and NutritionBiologyMolecular BiologyEcology Evolution Behavior and SystematicsGlycoproteinsEmbryonic stem cellExtracellular Matrix CompositionEpitheliumGastrointestinal Tractlcsh:GeneticsMutagenesisEctopic expressionGene Function[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOrganism DevelopmentDevelopmental Biology
researchProduct

Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

2015

ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apopto…

lcsh:MedicineMedicine (miscellaneous)Genes InsectApoptosisDystrophyInhibitor of Apoptosis ProteinsAnimals Genetically ModifiedCTG repeat expansion0302 clinical medicineImmunology and Microbiology (miscellaneous)Drosophila ProteinsMyotonic DystrophyMyocyte0303 health sciencesTOR Serine-Threonine KinasesMyotonin-protein kinaseNuclear ProteinsMuscle atrophyUp-RegulationCell biologyMuscular AtrophyDrosophila melanogastermedicine.anatomical_structureFemalemedicine.symptomSignal TransductionResearch Articlelcsh:RB1-214congenital hereditary and neonatal diseases and abnormalitiesProgrammed cell deathNeuroscience (miscellaneous)BiologyMyotonic dystrophyMyotonin-Protein KinaseMuscleblindGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAutophagylcsh:PathologymedicineAnimalsHumans030304 developmental biologylcsh:RAutophagyDystrophySkeletal musclemedicine.diseaseMolecular biologyDisease Models AnimalMuscle atrophyTrinucleotide Repeat Expansion030217 neurology & neurosurgeryDisease Models & Mechanisms
researchProduct

cis-regulatory variation modulates susceptibility to enteric infection in the Drosophila genetic reference panel

2020

Abstract Background Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited. Results To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression quantitative trait loci (local-eQTLs) with infection-specific ones located …

lcsh:QH426-470Quantitative Trait Locimotifsallele-specific expressionPolymorphism Single Nucleotidecomplex traitsgenerationPseudomonasAnimalsDrosophila ProteinsRegulatory Elements Transcriptionallcsh:QH301-705.5AllelesBinding SitesResearchF-Box ProteinsassociationForkhead Transcription FactorsGastrointestinal Tractlcsh:GeneticsDrosophila melanogasterlcsh:Biology (General)dissectionresponsesFemaleTranscriptomerevealsdiscoveryGenome Biology
researchProduct

The ecdysone-induced DHR4 orphan nuclear receptor coordinates growth and maturation in Drosophila

2005

0092-8674 (Print) Journal Article Research Support, Non-U.S. Gov't; A critical determinant of insect body size is the time at which the larva stops feeding and initiates wandering in preparation for metamorphosis. No genes have been identified that regulate growth by contributing to this key developmental decision to terminate feeding. We show here that mutations in the DHR4 orphan nuclear receptor result in larvae that precociously leave the food to form premature prepupae, resulting in abbreviated larval development that translates directly into smaller and lighter animals. In addition, we show that DHR4 plays a central role in the genetic cascades triggered by the steroid hormone ecdyson…

medicine.medical_specialtyEcdysonemedicine.medical_treatmentmedia_common.quotation_subjectRepressorReceptors Cytoplasmic and NuclearBiologymedicine.disease_causeGeneral Biochemistry Genetics and Molecular Biologychemistry.chemical_compoundInternal medicineReceptorsmedicineDrosophila ProteinsAnimalsMetamorphosisDrosophila/genetics/*growth & developmentPupa/physiologyRegulator genemedia_commonLarvaMutationMetamorphosisBiochemistry Genetics and Molecular Biology(all)Biological/physiologyfungiMetamorphosis BiologicalPupaGene Expression Regulation DevelopmentalDrosophila Proteins/genetics/*metabolismDevelopmental/physiologyCytoplasmic and Nuclear/genetics/*metabolismNeurosecretory SystemsCell biologyEcdysone/*metabolismSteroid hormoneEndocrinologyNuclear receptorchemistryGene Expression RegulationLarvaLarva/growth & developmentMutationNeurosecretory Systems/metabolismDrosophilaEcdysone
researchProduct

Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam

2013

The control of organ growth is a fundamental aspect of animal development but remains poorly understood. The morphogen Dpp has long been considered as a general promoter of cell proliferation during Drosophila wing development. It is an ongoing debate whether the Dpp gradient is required for the uniform cell proliferation observed in the wing imaginal disc. Here, we investigated how the Dpp signaling pathway regulates proliferation during wing development. By systematic manipulation of Dpp signaling we observed that it controls proliferation in a region-specific manner: Dpp, via omb, promoted proliferation in the lateral and repressed proliferation in the medial wing disc. Omb controlled th…

medicine.medical_specialtyanimal structuresMicroRNA GeneNerve Tissue ProteinsBiologyTranscription (biology)Internal medicinemedicineAnimalsDrosophila ProteinsWings AnimalMolecular BiologyDpp signaling pathwayBody PatterningCell ProliferationWingCell growthAnimal developmentCell biologyMicroRNAsImaginal discEndocrinologyDrosophilaT-Box Domain ProteinsSignal TransductionDevelopmental BiologyMorphogenDevelopment
researchProduct