Search results for "Lie superalgebra"

showing 10 items of 20 documents

On codimension growth of finite-dimensional Lie superalgebras

2012

Lie superalgebra codimensionAlgebraGeneral MathematicsCodimensionMathematicsJournal of the London Mathematical Society
researchProduct

Back to the Amitsur-Levitzki theorem: a super version for the orthosymplectic Lie superalgebra osp(1, 2n)

2003

We prove an Amitsur-Levitzki type theorem for the Lie superalgebras osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras gl(p,q) cannot satisfy an Amitsur-Levitzki type super identity if p, q are non zero and conjecture that neither can any other classical simple Lie superalgebra with the exception of osp(1,2n).

Lie superalgebraType (model theory)17B2001 natural sciencesInterpretation (model theory)CombinatoricsIdentity (mathematics)Simple (abstract algebra)Mathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsRepresentation Theory (math.RT)Classical theoremMathematics::Representation TheoryMathematical PhysicsPhysicsConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010308 nuclear & particles physics010102 general mathematicsMathematics::Rings and AlgebrasStatistical and Nonlinear Physics16. Peace & justice17B56[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]17B20; 17B56Mathematics - Representation Theory
researchProduct

Contractions yielding new supersymmetric extensions of the poincaré algebra

1991

Two new Poincare superalgebras are analysed. They are obtained by the Wigner-Inonu contraction from two real forms of the superalgebra OSp(2;4;C) - one describing the N = 2 anti-de-Sitter superalgebra with a non-compact internal symmetry SO(1, 1) and the other corresponding to the de-Sitter superalgebra with internal symmetry SO(2). Both are 19-dimensional self-conjugate extensions of the Konopel'chenko superalgebra. They contain 10 Poincare generators and one generator of internal symmetry in addition to 8 odd generators half of which, however, do not commute with translations.

Mathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsLie superalgebraSupersymmetrySuperalgebraGenerator (circuit theory)Algebrasymbols.namesakeMathematics::Quantum AlgebraPoincaré conjecturesymbolsSupermatrixQuantum field theoryAlgebra over a fieldMathematics::Representation TheoryMathematical PhysicsMathematicsReports on Mathematical Physics
researchProduct

NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS

1992

The Standard Model of Electroweak Interactions can be described by a generalized Yang-Mills field incorporating both the usual gauge bosons and the Higgs fields. The graded derivative by means of which the Yang-Mills field strength is constructed involves both a differential acting on space-time and a differential acting on an associative graded algebra of matrices. The square of the curvature for the corresponding covariant derivative yields the bosonic Lagrangian of the Standard Model. We show how to recover the whole fermionic part of the Standard Model in this framework. Quarks and leptons fit naturally into the smallest typical and nontypical irreducible representations of the graded …

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyGraded ringAstronomy and AstrophysicsLie superalgebraNoncommutative geometryAtomic and Molecular Physics and OpticsSuper-Poincaré algebraGraded Lie algebraFiltered algebraTheoretical physicsLie algebraAlgebra representationInternational Journal of Modern Physics A
researchProduct

Relative cohomology spaces for some osp($n|2$)-modules

2018

International audience; In this work, we describe the H-invariant, so(n)-relative cohomology of a natural class of osp(n|2)-modules M, for n ≠ 2. The Lie superalgebra osp(n|2) can be realized as a superalgebra of vector fields on the superline R1|n. This yields canonical actions on spaces of densities and differential operators on the superline. The above result gives the zero, first, and second cohomology spaces for these modules of densities and differential operators.

Pure mathematics010102 general mathematics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Zero (complex analysis)Statistical and Nonlinear PhysicsLie superalgebraDifferential operator01 natural sciencesCohomologySuperalgebraMathematics::Quantum Algebra0103 physical sciencesVector field010307 mathematical physics0101 mathematicsMathematics::Representation TheoryNatural classMathematical PhysicsMathematics
researchProduct

Singular quadratic Lie superalgebras

2012

In this paper, we give a generalization of results in \cite{PU07} and \cite{DPU10} by applying the tools of graded Lie algebras to quadratic Lie superalgebras. In this way, we obtain a numerical invariant of quadratic Lie superalgebras and a classification of singular quadratic Lie superalgebras, i.e. those with a nonzero invariant. Finally, we study a class of quadratic Lie superalgebras obtained by the method of generalized double extensions.

Pure mathematics17B05Super Poisson bracketFOS: Physical sciencesLie superalgebraGraded Lie algebraRepresentation of a Lie groupMathematics::Quantum AlgebraMathematics::Representation TheoryMathematical PhysicsMathematicsQuadratic Lie superalgebrasDiscrete mathematicsAlgebra and Number TheoryInvariant[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Simple Lie groupMathematics::Rings and AlgebrasMathematical Physics (math-ph)17B30Killing form[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Lie conformal algebraDouble extensionsGeneralized double extensionsAdjoint representation of a Lie algebra15A63 17B05 17B30 17B70Adjoint orbits 2000 MSC: 15A6317B70Fundamental representation
researchProduct

THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n)

2006

http://www.worldscinet.com/jaa/05/0503/S0219498806001740.html; International audience; Based on Kostant's cohomological interpretation of the Amitsur–Levitzki theorem, we prove a super version of this theorem for the Lie superalgebras osp(1, 2n). We conjecture that no other classical Lie superalgebra can satisfy an Amitsur–Levitzki type super identity. We show several (super) identities for the standard super polynomials. Finally, a combinatorial conjecture on the standard skew supersymmetric polynomials is stated.

Pure mathematicsAlgebra and Number TheoryConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Applied Mathematics010102 general mathematicsMathematics::Rings and AlgebrasSkewLie superalgebraType (model theory)16. Peace & justice01 natural sciences[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Interpretation (model theory)Identity (mathematics)Mathematics::Quantum Algebra0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematics
researchProduct

Jeu de taquin and diamond cone for Lie (super)algebras

2015

Abstract In this paper, we recall combinatorial basis for shape and reduced shape algebras of the Lie algebras gl ( n ) , sp ( 2 n ) and so ( 2 n + 1 ) . They are given by semistandard and quasistandard tableaux. Then we generalize these constructions to the case of the Lie superalgebra spo ( 2 n , 2 m + 1 ) . The main tool is an extension of Schutzenberger's jeu de taquin to these algebras.

Pure mathematicsGeneral MathematicsLie algebraJeu de taquinLie superalgebraBasis (universal algebra)Cone (category theory)Extension (predicate logic)MathematicsBulletin des Sciences Mathématiques
researchProduct

The graded Lie algebra structure of Lie superalgebra deformation theory

1989

We show how Lie superalgebra deformation theory can be treated by graded Lie algebras formalism. Rigidity and integrability theorems are obtained.

Pure mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Simple Lie groupMathematics::Rings and Algebras010102 general mathematicsStatistical and Nonlinear PhysicsLie superalgebraKilling form01 natural sciencesAffine Lie algebra[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Lie conformal algebraGraded Lie algebraAlgebraAdjoint representation of a Lie algebraRepresentation of a Lie group0103 physical sciences010307 mathematical physics0101 mathematicsComputingMilieux_MISCELLANEOUSComputer Science::DatabasesMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Nambu structures and super-theorem of Amitsur-Levitzki

2004

In this thesis, we establish new polynomial identities in a non commutative combinatorial framework. In the first part, we present new Nambu-Lie structures by classifying all (n-1)-structures in \R^n and we give a method for defining all-order brackets in Lie algebras. We are able to quantify one of our structures, thanks to standard polynomials and even Clifford algebras. In the second part of our work, we generalize the notion of standard polynomials to graded algebras, and we prove an Amitsur-Levitzki type theorem for the Lie superalgebras \osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We give super versions of properties and results needed in Kos…

[ MATH ] Mathematics [math]2n)Lie superalgebras osp(1théorème d'Amitsur-Levitzkitransgression.Crochet de Nambu-LieLie algebraAmitsur-Levitzki theoremstandard polynomial[MATH] Mathematics [math]Nambu-Lie bracketspolynôme standardquantificationsuperalgèbres de Lie osp(1algèbre de Clifford[MATH]Mathematics [math]Clifford algebratransgressionalgèbre de Lie
researchProduct