Search results for "Lie superalgebra"
showing 10 items of 20 documents
On codimension growth of finite-dimensional Lie superalgebras
2012
Back to the Amitsur-Levitzki theorem: a super version for the orthosymplectic Lie superalgebra osp(1, 2n)
2003
We prove an Amitsur-Levitzki type theorem for the Lie superalgebras osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras gl(p,q) cannot satisfy an Amitsur-Levitzki type super identity if p, q are non zero and conjecture that neither can any other classical simple Lie superalgebra with the exception of osp(1,2n).
Contractions yielding new supersymmetric extensions of the poincaré algebra
1991
Two new Poincare superalgebras are analysed. They are obtained by the Wigner-Inonu contraction from two real forms of the superalgebra OSp(2;4;C) - one describing the N = 2 anti-de-Sitter superalgebra with a non-compact internal symmetry SO(1, 1) and the other corresponding to the de-Sitter superalgebra with internal symmetry SO(2). Both are 19-dimensional self-conjugate extensions of the Konopel'chenko superalgebra. They contain 10 Poincare generators and one generator of internal symmetry in addition to 8 odd generators half of which, however, do not commute with translations.
NONCOMMUTATIVE GEOMETRY AND GRADED ALGEBRAS IN ELECTROWEAK INTERACTIONS
1992
The Standard Model of Electroweak Interactions can be described by a generalized Yang-Mills field incorporating both the usual gauge bosons and the Higgs fields. The graded derivative by means of which the Yang-Mills field strength is constructed involves both a differential acting on space-time and a differential acting on an associative graded algebra of matrices. The square of the curvature for the corresponding covariant derivative yields the bosonic Lagrangian of the Standard Model. We show how to recover the whole fermionic part of the Standard Model in this framework. Quarks and leptons fit naturally into the smallest typical and nontypical irreducible representations of the graded …
Relative cohomology spaces for some osp($n|2$)-modules
2018
International audience; In this work, we describe the H-invariant, so(n)-relative cohomology of a natural class of osp(n|2)-modules M, for n ≠ 2. The Lie superalgebra osp(n|2) can be realized as a superalgebra of vector fields on the superline R1|n. This yields canonical actions on spaces of densities and differential operators on the superline. The above result gives the zero, first, and second cohomology spaces for these modules of densities and differential operators.
Singular quadratic Lie superalgebras
2012
In this paper, we give a generalization of results in \cite{PU07} and \cite{DPU10} by applying the tools of graded Lie algebras to quadratic Lie superalgebras. In this way, we obtain a numerical invariant of quadratic Lie superalgebras and a classification of singular quadratic Lie superalgebras, i.e. those with a nonzero invariant. Finally, we study a class of quadratic Lie superalgebras obtained by the method of generalized double extensions.
THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n)
2006
http://www.worldscinet.com/jaa/05/0503/S0219498806001740.html; International audience; Based on Kostant's cohomological interpretation of the Amitsur–Levitzki theorem, we prove a super version of this theorem for the Lie superalgebras osp(1, 2n). We conjecture that no other classical Lie superalgebra can satisfy an Amitsur–Levitzki type super identity. We show several (super) identities for the standard super polynomials. Finally, a combinatorial conjecture on the standard skew supersymmetric polynomials is stated.
Jeu de taquin and diamond cone for Lie (super)algebras
2015
Abstract In this paper, we recall combinatorial basis for shape and reduced shape algebras of the Lie algebras gl ( n ) , sp ( 2 n ) and so ( 2 n + 1 ) . They are given by semistandard and quasistandard tableaux. Then we generalize these constructions to the case of the Lie superalgebra spo ( 2 n , 2 m + 1 ) . The main tool is an extension of Schutzenberger's jeu de taquin to these algebras.
The graded Lie algebra structure of Lie superalgebra deformation theory
1989
We show how Lie superalgebra deformation theory can be treated by graded Lie algebras formalism. Rigidity and integrability theorems are obtained.
Nambu structures and super-theorem of Amitsur-Levitzki
2004
In this thesis, we establish new polynomial identities in a non commutative combinatorial framework. In the first part, we present new Nambu-Lie structures by classifying all (n-1)-structures in \R^n and we give a method for defining all-order brackets in Lie algebras. We are able to quantify one of our structures, thanks to standard polynomials and even Clifford algebras. In the second part of our work, we generalize the notion of standard polynomials to graded algebras, and we prove an Amitsur-Levitzki type theorem for the Lie superalgebras \osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We give super versions of properties and results needed in Kos…