Search results for "Light scattering"
showing 10 items of 464 documents
Temporal control of xyloglucan self-assembly into layered structures by radiation-induced degradation
2016
Partially degalactosylated xyloglucan from tamarind seeds (Deg-XG) is a very appealing biopolymer for the production of in situ gelling systems at physiological temperature. In this work, we observe that the morphology of hydrogels evolves towards high degrees of structural organization with time, yielding to dense stacks of thin membranes within 24 h of incubation at 37 °C. We also explore the possibility offered by gamma irradiation of controlling the time scale of this phenomenon, the final morphology and mechanical properties of the system. Structural and molecular modifications of Deg-XG with dose are investigated by FTIR, dynamic light scattering (DLS) and rotational viscosimetry. The…
Using Dynamic Light Scattering Experimental Setup and Neural Networks For Particle Sizing
2017
Abstract Using a Lorentzian function fit as reference, a basic experiment was designed for processing Dynamic Light Scattering time series, allowing to estimate the average particle size of a suspension. For fitting the averaged power spectrum of the time series, several neural network configurations were tested in order to compare the results with the reference. The results of this comparison revealed a good match, serving as a proof of concept for using neural networks as an alternative for DLS time series processing.
Using Dynamic Light Scattering for Monitoring the Size of the Suspended Particles in Wastewater
2019
Abstract A coherent light scattering experiment on wastewater samples extracted from several stages of water processing within a wastewater processing plant was carried out. The samples were allowed to sediment while they were the subject of a Dynamic Light Scattering (DLS) measurement. The recorded time series were processed using an Artificial Neural Network based DLS procedure to produce the average diameter of the particles in suspension. The method, using a single physical procedure for monitoring the variation of the average diameter in time, indicates the dominant type of suspensions in water.
Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells
2015
Multicavity halloysite nanotube materials were employed as simultaneous carriers for two different natural drugs, silibinin and quercetin, at 6.1% and 2.2% drug loadings, respectively. The materials were obtained by grafting functionalized amphiphilic cyclodextrin onto the HNT external surface. The new materials were characterized by FT-IR spectroscopy, SEM, thermogravimetry, turbidimetry, dynamic light scattering and ζ-potential techniques. The interaction of the two molecules with the carrier was studied by HPLC measurements and fluorescence spectroscopy, respectively. The release of the drugs from HNT-amphiphilic cyclodextrin, at two different pH values, was also investigated by means of…
Passive and active light scattering obstacles
2005
Simulation of vision pathologies and adverse viewing conditions in laboratory conditions requires optical phantoms with different level of light scattering. Such obstacles are designed as passive or active elements applying several technologies. We used for studies two kinds of solid state smart materials with electrically controllable light scattering - electrooptic PLZT ceramics, polymer dispersed liquid crystals PDLC and obstacles with fixed light scattering - composite of polymer methylmethaacrilat PMM together with grinded glass microparticles. Report analyzes optical characteristics of such obstacles - attenuation, scattering, depolarization of different wavelength light at various sc…
Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings
2015
[EN] Thermal annealing at 400 degrees C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with lambda(em) from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into …
Formation of Laves phases in buoyancy matched hard sphere suspensions.
2018
Colloidal Laves phases (LPs) are promising precursors for photonic materials. Laves phases have not yet been observed to form in experiments on colloidal suspensions of hard spheres (HS), even though they have been reported in computer simulations. LP formation so far has been achieved only for binary mixtures of colloidal charged spheres or ligand-stabilized nano-particles after drying. Using static light scattering, we monitored LP formation and annealing in a binary mixture of buoyant hard sphere approximants (size ratio Γ = 0.77, number or molar fraction of small spheres xS = 0.76) for volume fractions in the fluid-crystal coexistence regions. All samples spontaneously formed MgZn2 type…
Effect of annealing on Co2FeAl0.5Si0.5thin films: A magneto-optical and x-ray absorption study
2011
A series of Al and MgO-capped Co${}_{2}$FeAl${}_{0.5}$Si${}_{0.5}$ epitaxial thin films grown on MgO with various levels of L2${}_{1}$ ordering was obtained by in situ annealing. The films were studied by means of x-ray absorption spectroscopy, x-ray magnetic circular dichroism (XMCD), magneto-optical Kerr effect magnetometry, and Brillouin light scattering. We find the anisotropy constants decrease, while the spin wave stiffness increases as the samples are annealed to higher temperatures. The magnetization as determined by Brillouin light scattering reveals a maximum value at intermediate annealing temperatures. Surprisingly, the orbital-to-spin-moment ratio (as seen from XMCD) is essenti…
Dynamics of nanoparticles in a supercooled liquid
2008
The dynamic properties of nanoparticles suspended in a supercooled glass forming liquid are studied by x-ray photon correlation spectroscopy. While at high temperatures the particles undergo Brownian motion the measurements closer to the glass transition indicate hyperdiffusive behavior. In this state the dynamics is independent of the local structural arrangement of nanoparticles, suggesting a cooperative behavior governed by the near-vitreous solvent.
Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy.
2012
Growth of heterogeneously nucleated, wall based crystals plays a major role in determining the micro-structure during melt casting. This issue is here addressed using a model system of charged colloidal spheres in deionized aqueous suspension observed by Bragg microscopy which is a combination of light scattering and microscopy. We examine the evolution of the three-dimensional size, shape, and orientation of twin domains in monolithic crystals growing from two opposing planar walls into a meta-stable (shear-) melt. At each wall crystal orientation and twinning emerges during nucleation with small domains. During growth these widen and merge. From image analysis we observe the lateral coars…