Search results for "Linear Algebra."

showing 10 items of 552 documents

Hasse diagrams and orbit class spaces

2011

Abstract Let X be a topological space and G be a group of homeomorphisms of X. Let G ˜ be an equivalence relation on X defined by x G ˜ y if the closure of the G-orbit of x is equal to the closure of the G-orbit of y. The quotient space X / G ˜ is called the orbit class space and is endowed with the natural order inherited from the inclusion order of the closure of the classes, so that, if such a space is finite, one can associate with it a Hasse diagram. We show that the converse is also true: any finite Hasse diagram can be realized as the Hasse diagram of an orbit class space built from a dynamical system ( X , G ) where X is a compact space and G is a finitely generated group of homeomo…

Pure mathematicsMathematical analysisOrbit classClosure (topology)Hasse diagramTopological spaceGroup of homeomorphismsQuotient space (linear algebra)Hasse principleRealizationHomogeneous spaceCovering relationFinitely generated groupGeometry and TopologyHasse diagramMathematicsTopology and its Applications
researchProduct

A note on k-generalized projections

2007

Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k  =  A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].

Pure mathematicsNumerical AnalysisAlgebra and Number TheoryNormal matricesHilbert spaceCharacterization (mathematics)Matrius (Matemàtica)Normal matrixAlgebrasymbols.namesakeLinear algebrasymbolsDiscrete Mathematics and CombinatoricsSpectral projectionGeometry and TopologyÀlgebra linealLinear combinationProjectionst-Potent matricesMathematicsLinear Algebra and its Applications
researchProduct

Generalized Hake property for integrals of Henstock type

2013

An integral of Henstock-Kurzweil type is considered relative to an abstract differential basis in a topological space. It is shown that under certain conditions posed onto the basis this integral satisfies the generalized Hake property.

Pure mathematicsProperty (philosophy)HakeBasis (linear algebra)Settore MAT/05 - Analisi MatematicaGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsTopological spaceType (model theory)Hake propertyDifferential (mathematics)Mathematics
researchProduct

Non-self-adjoint hamiltonians defined by Riesz bases

2014

We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, {we give conditions under which these Hamiltonians} can be factorized in terms of generalized lowering and raising operators.

Pure mathematicsQuantum PhysicsHamiltonian operatorBasis (linear algebra)Spectrum (functional analysis)Hilbert spaceFOS: Physical sciencesStatistical and Nonlinear PhysicsRiesz basesMathematical Physics (math-ph)symbols.namesakeSettore MAT/05 - Analisi MatematicaSimple (abstract algebra)symbolsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaSelf-adjoint operatorEigenvalues and eigenvectorsMathematical PhysicsMathematics
researchProduct

A construction of equivariant bundles on the space of symmetric forms

2021

We construct stable vector bundles on the space of symmetric forms of degree d in n+1 variables which are equivariant for the action of SL_{n+1}(C), and admit an equivariant free resolution of length 2. For n=1, we obtain new examples of stable vector bundles of rank d-1 on P^d, which are moreover equivariant for SL_2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.

Pure mathematicsRank (linear algebra)General MathematicsVector bundlestable vector bundlesSpace (mathematics)Mathematics - Algebraic GeometryMatrix (mathematics)symmetric formsDimension (vector space)FOS: MathematicsRepresentation Theory (math.RT)Algebraic Geometry (math.AG)Mathematics::Symplectic Geometryhomogeneous varietyMathematicsequivariant resolution14J60quiver representationconstant rank matrixhomogeneous bundleEquivariant mapgroup actionStable vector bundles; symmetric forms; group action; equivariant resolution; constant rank matrix; homogeneous bundle; homogeneous variety; quiver representationMathematics - Representation TheoryResolution (algebra)Vector spaceRevista Matemática Iberoamericana
researchProduct

Truncated modules and linear presentations of vector bundles

2018

We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.

Pure mathematicsRank (linear algebra)General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Vector bundle010103 numerical & computational mathematicsLinear presentationCommutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsPoint (geometry)MSC: 13D02 16W50 15A30 14J600101 mathematicsVector bundleAlgebraic Geometry (math.AG)MathematicsMathematics::Commutative Algebra010102 general mathematicsConstruct (python library)Graded truncated moduleMathematics - Commutative AlgebraInstanton bundleCohomology[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Matrix of co nstant rank[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Constant (mathematics)
researchProduct

Bessel sequences, Riesz-like bases and operators in Triplets of Hilbert spaces

2016

Riesz-like bases for a triplet of Hilbert spaces are investigated, in connection with an analogous study for more general rigged Hilbert spaces performed in a previous paper. It is shown, in particular, that every \(\omega \)-independent, complete (total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert spaces. An application to non self-adjoint Schrodinger-type operators is considered. Moreover, some of the simplest operators we can define by them and their dual bases are studied.

Pure mathematicsSequenceBasis (linear algebra)010308 nuclear & particles physics010102 general mathematicsHilbert spaceRiesz bases quasi-Hermitian operators rigged Hilbert spaces01 natural sciencesSchauder basissymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencessymbols0101 mathematicsConnection (algebraic framework)Bessel functionMathematics
researchProduct

Approximations of positive operators and continuity of the spectral radius III

1994

AbstractWe prove estimates on the speed of convergence of the ‘peripheral eigenvalues’ (and principal eigenvectors) of a sequence Tn of positive operators on a Banach lattice E to the peripheral eigenvalues of its limit operator T on E which is positive, irreducible and such that the spectral radius r(T) of T is a Riesz point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under some conditions on the kind of approximation of Tn to T. These results sharpen results of convergence obtained by the authors in previous papers.

Pure mathematicsSequenceOperator (computer programming)Rank (linear algebra)Spectral radiusSpectrum (functional analysis)General MedicineLimit (mathematics)Eigenvalues and eigenvectorsMathematicsResolventJournal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
researchProduct

Neumann p-Laplacian problems with a reaction term on metric spaces

2020

We use a variational approach to study existence and regularity of solutions for a Neumann p-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.

Pure mathematicsTrace (linear algebra)Applied MathematicsGeneral Mathematics010102 general mathematicsPoincaré inequalityType (model theory)p-Laplacian operator Measure metric spaces Minimalp-weak upper gradient Minimizer01 natural sciencesMeasure (mathematics)010305 fluids & plasmasTerm (time)symbols.namesakeMetric spaceSettore MAT/05 - Analisi Matematica0103 physical sciencesBounded variationsymbolsp-Laplacian0101 mathematicsMathematics
researchProduct

Hurwitz spaces of triple coverings of elliptic curves and moduli spaces of abelian threefolds

2002

We prove that the moduli spaces A_3(D) of polarized abelian threefolds with polarizations of types D=(1,1,2), (1,2,2), (1,1,3) or (1,3,3) are unirational. The result is based on the study of families of simple coverings of elliptic curves of degree 2 or 3 and on the study of the corresponding period mappings associated with holomorphic differentials with trace 0. In particular we prove the unirationality of the Hurwitz space H_{3,A}(Y) which parameterizes simply branched triple coverings of an elliptic curve Y with determinants of the Tschirnhausen modules isomorphic to A^{-1}.

Pure mathematicsTrace (linear algebra)Degree (graph theory)Hurwitz spaces Abelian threefolds Prym varieties moduli unirationalityApplied MathematicsHolomorphic functionSpace (mathematics)Moduli spaceElliptic curveMathematics - Algebraic GeometryMathematics::Algebraic GeometrySimple (abstract algebra)14K10 (Primary) 14H30 14D07 (Secondary)FOS: MathematicsAbelian groupAlgebraic Geometry (math.AG)Mathematics
researchProduct