Search results for "Lithography"
showing 10 items of 242 documents
Actinic EUVL mask blank defect inspection by EUV photoelectron microscopy
2006
A new method for the actinic at-wavelength inspection of defects inside and ontop of Extreme Ultraviolet Lithography (EUVL) multilayer-coated mask blanks is presented. The experimental technique is based on PhotoElectron Emission Microscopy (PEEM) supported by the generation of a standing wave field inside and above the multilayer mask blank when illuminated near the resonance Bragg wavelength at around 13.5 nm wavelength. Experimental results on programmed defect samples based on e-beam lithographic structures or PSL equivalent silica balls overcoated with an EUV multilayer show that buried defects scaling down to 50 nm in lateral size are detectable with further scalability down to 30 nm …
Laser Beam Lithography For 3-D Surface Patterning
1993
A low power laser processing unit, for microlithographic applications on non-planar surfaces, is described. By combining proper laser beam handling, micropositioning, software control and surface coating techniques, a 5-axis robotic system for laser writing has been set up. Light from a He-Cd laser source is fiber-delivered to a writing head, which moves around a resist coated solid object. After exposure, traditional wet processing can be applied. The unit is capable of patterning metal films deposited on samples up to a size of 50x50x100 mm, with 5 micrometer spatial resolution. An application in 3-D circuit fabrication is presented.
Actinic inspection of sub-50 nm EUV mask blank defects
2007
A new actinic mask inspection technology to probe nano-scaled defects buried underneath a Mo/Si multilayer reflection coating of an Extreme Ultraviolet Lithography mask blank has been implemented using EUV Photoemission Electron Microscopy (EUV-PEEM). EUV PEEM images of programmed defect structures of various lateral and vertical sizes recorded at around 13 nm wavelength show that 35 nm wide and 4 nm high buried line defects are clearly detectable. The imaging technique proves to be sensitive to small phase jumps enhancing the visibility of the edges of the phase defects which is explained in terms of a standing wave enhanced image contrast at resonant EUV illumination.
Inspection of EUVL mask blank defects and patterned masks using EUV photoemission electron microscopy
2008
We report on recent developments of an "at-wavelength" full-field imaging technique for inspection of multilayer mask blank defects and patterned mask samples for extreme ultraviolet lithography (EUVL) by EUV photoemission electron microscopy (EUV-PEEM). A bump-type line defect with a width of approximately 35nm that is buried beneath Mo/Si multilayer has been detected clearly, and first inspection results obtained from a patterned TaN absorber EUVL mask sample is reported. Different image contrast of a similar width of multilayer-covered substrate line defect and on top TaN absorber square has been observed in the EUV-PEEM images, and origin of the difference in their EUV-PEEM image contra…
Exploring 10 Gb/s transmissions in Titanium dioxide based waveguides at 1.55 pm and 2.0 pm
2017
Exploring new spectral bands for optical transmission is one of the solutions to support the increasingly demand of data traffic. The recent development of dedicated hollow-core photonic bandgap fibers [1], associated to the emergence of thulium doped fiber amplifiers [2] has recently focused the attention further in the infrared, and more specifically around 2 μm. Regarding integrated photonics, it becomes therefore interesting to find a suitable platform to operate at 2 μm as well as in the other more conventional spectral bands (going from 800 nm to 1550 nm). Here, we propose titanium dioxide (TiO 2 ) as a good candidate for integrated waveguide photonics and demonstrate, for the first t…
Polymer based tuneable photonic crystals
2007
We report on the fabrication and characterization of photonic crystal slab waveguide resonators which contain a nanostructured second-order nonlinear optical polymer. The combination of a photonic crystal resonator realized in a second-order nonlinear optical polymer allowed the detection of electro-optical modulation of light with a sub-1-V sensitivity. Furthermore we report on the synthesis of novel nonlinear optical polymers with large second-order hyperpolarizability and improved glass transition temperature. The polymer slab waveguide is micro patterned by means of electron-beam lithography and reactive ion etching. The photonic crystal slab-based resonator consisted of a square lattic…
Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method
2015
Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ̄ 0 ] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveal…
Silica masks for improved surface poling of lithium niobate
2005
Surface periodic poling of congruent lithium niobate was performed with the aid of photolithographically defined silica masks. The latter helped improving the control of duty cycle in the periodic domain poling, with 50:50 mark-to-space ratios. The role of silica was ascertained by numerically solving the Poisson equation.
Aperture-edge scattering in MeV ion-beam lithography. II. Scattering from a rectangular aperture
2009
The capability of collimators to define beams of MeV ions with sub-100nm dimensions has recently been demonstrated. Such nanometer beams have potential applications in MeV ion-beam lithography, which is the only maskless technique capable of producing extremely high aspect-ratio micro- and nanostructrures, as well as in high resolution MeV ion-beam imaging. Ion scattering from the collimator edges can be a resolution-restricting factor in these applications. Scattering processes at edges are difficult to study using conventional simulation codes because of the complicated geometry. In this part of our work, the authors used the GEANT4 toolkit as a simulation tool for studying the behavior o…
Aperture-edge scattering in MeV ion-beam lithography. I. Scattering from a straight Ta aperture edge
2009
Collimators are widely used to define MeV ion beams. Recent studies have shown the capability of collimators to define beams of MeV ions with sub-100nm dimensions. Such nanometer beams have potential applications in MeV ion-beam lithography, which is the only maskless technique capable of producing extremely high aspect-ratio micro- and nanostructrures, as well as in high-resolution MeV ion-beam-based tomography. The ion scattering from the collimator edges that define the beam can be a resolution-restricting factor in these applications. Scattering processes at edges are difficult to study using conventional simulation codes because of the complicated geometry. In this part of the work, th…