Search results for "MAGNETORESISTANCE"
showing 10 items of 173 documents
Influence of the covalent grafting of organic radicals to graphene on its magnetoresistance
2013
Graphene was obtained by direct exfoliation of graphite in o-dichlorobenzene (oDCB) or benzylamine, and further functionalized with 4,4′-[(1,3-dioxo-1,3-propanediyl)bis(oxy)]bis[2,2,6,6-tetramethyl-1-piperidinyloxy] (1-TEMPO) organic radicals by using the Bingel–Hirsch cyclopropanation reaction. Here, the use of different solvents permits variation of the density of radicals anchored to the carbon layers. Covalent grafting is unambiguously demonstrated by TGA, μ-Raman, XPS and EPR measurements, which also rule out spurious physisorption. Our transport measurements indicate that the conduction mechanism varies as a function of the density of radicals grafted to the carbon layers. Moreover, t…
Probing the electronic states of high-TMR off-stoichiometric Co2MnSi thin films by hard x-ray photoelectron spectroscopy
2014
The tunnel magnetoresistance ratio (TMR) of fully epitaxial magnetic tunnel junctions with an off-stoichiometric Co${}_{2}$MnSi Heusler alloy has been shown to exhibit a systematic dependence on Mn content, reaching 1135% at 4.2 K for Co${}_{2}$Mn${}_{1.29}$Si. In this paper, we explain the behavior of the observed TMR ratio using ab initio calculations and hard x-ray photoelectron spectroscopy (HAXPES). For the Mn-deficient samples, we show that the the drop of the TMR is caused by Co antisite atoms, which impose extra states into the minority-spin band gap. On the other hand, Mn-excess composition shows nearly half-metallic behavior. This result can be intuitively understood since both Co…
Calculation of surface quantum levels in tellurium inversion layers
1978
Structure and Properties of GdAuSn and the GdAuSn/MnAuSn System
2006
The crystal structure of GdAuSn was refined by means of single crystal X-ray diffraction. Band structure calculations based on the structural data confirmed the antiferromagnetic ground state and the metallic behaviour of GdAuSn. 119mSn, 155Gd and 197Au Mossbauer spectroscopic studies were used to verify the values of the hyperfine parameters that were given by the band structure calculations. Band structure calculations of MnAuSn confirmed that this half-Heusler compound belongs to the family of half-metallic ferromagnets. Magnetic susceptibility, conductivity and Mossbauer studies were used to characterize granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagn…
Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates
2014
Magnetoresistance oscillations were observed on networks of superconducting ultrathin Nb nanowires presenting evidences of either thermal or quantum activated phase slips. The magnetic transport data, discussed in the framework of different scenarios, reveal that the system behaves coherently in the temperature range where the contribution of the fluctuations is important.
Growth mechanism and transport properties of thin La0.67Ca0.33MnO3 films
1999
Abstract We prepared thin films of La 0.67 Ca 0.33 MnO 3 on different substrates with DC sputtering. The measured transport and magnetic properties could be explained by a lattice mismatch induced by the substrate. Hall effect measurements showed a holelike charge carrier density n * h = 1.3 per unit cell below T C . The magnetoresistance results from an increase of the mobility of the charge carriers in magnetic field.
Giant Negative Magnetoresistance Driven by Spin-Orbit Coupling at theLaAlO3/SrTiO3Interface
2015
The LaAlO3=SrTiO3 interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70%), attributed to a magnetic-field induced transition between interacting phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments over a broad temperature range, showing the persistence of the magnetoresistance up to the 20 K range—indicative of a single-particle mechanism. Motivated by a striking correspondence between the temperature and carrier density dependence of our magnetoresistance measurements we propo…
Magneto-Transport Results in Alq3 Based OSVs
2015
The achievement of good magnetoresistance signal at room temperature is an important requirement for the possible future development of organic devices for applications. However, until now only few works reported room temperature MR effect in organic spin valves (OSVs). In this regard, this chapter is dedicated to the investigation of Alq3-based OSVs where Alq3 molecule was chosen since it is a standard material in the field. A systematic study on Co/Alq3/Co OSVs will be presented showing room temperature MR results. Moreover, inelastic electron tunneling spectroscopy (IETS) technique will be used to prove spin injection into the organic layer. Finally, an insulating oxide barrier (Al2O3 or…
Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3
2019
We report a combined study of imaging the antiferromagnetic (AFM) spin structure and measuring the spin Hall magnetoresistance (SMR) in epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO$_3$. X-ray magnetic linear dichroism photoemission electron microscopy measurements reveal that the AFM spins of the SmFeO$_3$(110) align in the plane of the film. Angularly dependent magnetoresistance measurements show that SmFeO$_3$/Ta bilayers exhibit a positive SMR, in contrast to the negative SMR expected in previously studied collinear AFMs. The SMR amplitude increases linearly with increasing external magnetic field at higher magnetic field, suggesting that field-induced canti…