Search results for "MESH: Humans"

showing 10 items of 211 documents

The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

2012

Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids ( VLCFA) and inflammatory demyelination. However, the components of this inflammatory process in P-NALD remain elusive. In this study, we used transcriptomic profiling and PCR array analyses to explore inflammatory gene expression in patient fibroblasts. Our results show the activation of IL-1 inflammatory pathway accompanied by the increased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. Human fibroblasts exposed to very-long-chain fatty acids…

MESH: Inflammationperoxisomal disordersMESH: Osteopontinmedicine.medical_treatmentMESH : ImmunohistochemistryMESH : Transcriptomechemokine receptorsVoeding Metabolisme en Genomica0302 clinical medicineEndocrinologyMESH: Reverse Transcriptase Polymerase Chain ReactionAcyl-CoA oxidasemultiple-sclerosis lesionsMESH : OsteopontinMESH : Fatty AcidsCells CulturedOligonucleotide Array Sequence Analysis[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism0303 health sciencesOxidase testMESH : Gene Expression RegulationReverse Transcriptase Polymerase Chain ReactionFatty AcidsMESH: Acyl-CoA OxidaseMESH : Reverse Transcriptase Polymerase Chain ReactionPeroxisome[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismImmunohistochemistryMESH: Gene Expression RegulationMetabolism and Genomics3. Good healthMESH: Fatty AcidsMESH : Oligonucleotide Array Sequence AnalysisCytokineMetabolisme en GenomicaACOX1AdrenoleukodystrophyNutrition Metabolism and GenomicsMESH : Acyl-CoA Oxidasemedicine.symptomInflammation MediatorsMESH: Cells Culturedmedicine.medical_specialtyMESH : Interleukin-8MESH : Interleukin-6MESH: Inflammation MediatorsInflammationBiologyin-vitroMESH : Interleukin-1MESH : Inflammation Mediators03 medical and health sciencesVoedingInternal medicinePeroxisomal disordernf-kappa-bMESH : Cells CulturedMESH : Fibroblastsmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologygene[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyNutrition030304 developmental biologyVLAGInflammationMESH: HumansMESH : InflammationInterleukin-6MESH: TranscriptomeInterleukin-8MESH : HumansMESH: Interleukin-1MESH: ImmunohistochemistryFibroblastsmedicine.diseaseMESH: Interleukin-6MESH: Interleukin-8EndocrinologyGene Expression RegulationMESH: FibroblastsMESH: Oligonucleotide Array Sequence AnalysiscellsBrief ReportsOsteopontinmicroarray analysisAcyl-CoA OxidaseTranscriptomeinterleukin-1030217 neurology & neurosurgeryx-linked adrenoleukodystrophyInterleukin-1
researchProduct

TRPC1 is regulated by caveolin-1 and is involved in oxidized LDL-induced apoptosis of vascular smooth muscle cells.

2009

International audience; Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study, we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference prevents the Ca(2+) influx and red…

MESH: Lipoproteins LDLVascular smooth muscleOxysterolCaveolin 1ApoptosisBiologyMESH: Base SequenceMESH : RNA Small InterferingMuscle Smooth VascularTRPC1Transient receptor potential channelMESH: RNA Small InterferingMESH : Cells CulturedHumansMESH: Caveolin 1RNA Small InterferingMESH: TRPC Cation ChannelsCells CulturedTRPC Cation ChannelsMESH: HumansBase SequenceMESH : Gene Expression RegulationMESH: ApoptosisMESH : HumansMESH : TRPC Cation ChannelsMESH : Muscle Smooth VascularArticlesCell BiologyMESH: Muscle Smooth VascularActin cytoskeletonMESH: Gene Expression RegulationCell biologyLipoproteins LDLGene Expression RegulationApoptosisCaveolin 1MESH : Caveolin 1Molecular Medicinelipids (amino acids peptides and proteins)MESH : Base SequenceMESH : Lipoproteins LDLHomeostasisMESH : ApoptosisMESH: Cells Cultured
researchProduct

S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.

2011

International audience; BACKGROUND & AIMS: Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS: Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell…

MESH: NitroglycerinMESH: Signal TransductionTime FactorsMESH: Membrane MicrodomainsApoptosisMESH : Fas Ligand ProteinCytoplasmic partMESH: Lipid AFas ligandMiceNitroglycerin0302 clinical medicineMESH : Protein TransportMESH : FemaleMESH: AnimalsFADDLipid raft0303 health sciencesTumorbiologyColon CancerMESH : Lipid AMESH : BiotinylationGastroenterologyFas receptorMESH: Antigens CD95Protein TransportLipid AMESH : Colonic NeoplasmsMESH : Nitric OxideMESH : Nitric Oxide Donors030220 oncology & carcinogenesisColonic NeoplasmsDeath-inducing signaling complexFemale[ SDV.MHEP.HEG ] Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH : MutationMESH : TransfectionSignal TransductionMESH : Time FactorsMESH: Protein TransportFas Ligand ProteinMESH : Mammary Neoplasms ExperimentalMESH: MutationMESH: Cell Line TumorMESH: Mammary Neoplasms ExperimentalNitric OxideTransfectionCaspase 803 medical and health sciencesMembrane MicrodomainsCell Line TumorMESH : MiceAnimalsHumansBiotinylationNitric Oxide DonorsMESH: BiotinylationCysteinefas ReceptorMESH: MiceMESH : Protein Processing Post-Translational030304 developmental biologyMESH : Signal TransductionMESH: Colonic NeoplasmsMESH : CysteineMESH: HumansHepatologyMESH : Cell Line TumorMESH: ApoptosisMESH: TransfectionMESH : HumansMESH: Time FactorsMammary Neoplasms Experimental[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH: CysteineMESH: Nitric Oxide DonorsMolecular biologySignalingMESH: Fas Ligand ProteinMESH : NitroglycerinApoptosisLocalizationMESH: Nitric OxideMESH: Protein Processing Post-TranslationalMutationbiology.proteinMESH : Membrane MicrodomainsMESH : AnimalsMESH : Antigens CD95Protein Processing Post-TranslationalMESH: FemaleMESH : Apoptosis
researchProduct

The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

2009

T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-beta/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor-related orphan receptor gamma t (ROR gamma t). We identify the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) as a key negative regulator of human and mouse Th17 differentiation. PPAR gamma activation in CD4(+) T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentia…

MESH: Nuclear Receptor Subfamily 1 Group F Member 3Helper-InducerReceptors Retinoic AcidT-LymphocytesMESH: Interleukin-17Cellular differentiationRetinoic AcidPeroxisome proliferator-activated receptorNeurodegenerativeInbred C57BLMedical and Health SciencesMiceInterleukin 210302 clinical medicineGroup FRAR-related orphan receptor gammaMESH: Nuclear Receptor Co-Repressor 2Receptors2.1 Biological and endogenous factorsThyroid HormoneImmunology and AllergyMESH: AnimalsAetiologyEncephalomyelitisPromoter Regions Geneticchemistry.chemical_classificationOrphan receptor0303 health sciencesReceptors Thyroid HormoneInterleukin-17Cell DifferentiationT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 33. Good healthCell biologyDNA-Binding Proteinsmedicine.anatomical_structureMESH: Repressor Proteins[SDV.IMM]Life Sciences [q-bio]/ImmunologyInterleukin 17MESH: Cell Differentiationmedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisNuclear Receptor Subfamily 1Member 31.1 Normal biological development and functioningT cellImmunologyBiologyAutoimmune DiseasePromoter RegionsExperimental03 medical and health sciencesGeneticUnderpinning researchMESH: Mice Inbred C57BLInternal medicineMESH: Promoter Regions GeneticGeneticsmedicineAnimalsHumansNuclear Receptor Co-Repressor 2MESH: Receptors Thyroid HormoneMESH: T-Lymphocytes Helper-InducerMESH: Encephalomyelitis Autoimmune ExperimentalMESH: Mice030304 developmental biologyMESH: Receptors Retinoic AcidMESH: HumansInflammatory and immune systemNeurosciencesBrief Definitive ReportCorrectionMESH: Multiple SclerosisBrain DisordersMice Inbred C57BLPPAR gammaRepressor ProteinsEndocrinologyMESH: PPAR gammaNuclear receptorchemistryMESH: DNA-Binding Proteins030217 neurology & neurosurgeryAutoimmuneJournal of Experimental Medicine
researchProduct

Mammary odor cues and pheromones: mammalian infant-directed communication about maternal state, mammae, and milk

2010

International audience; Neonatal mammals are exposed to an outstandingly powerful selective pressure at birth, and any mean to alleviate their localization effort and accelerate acceptance to orally grasp a nipple and ingest milk should have had advantageous consequences over evolutionary time. Thus, it is essential for females to display a biological interface structure that is sensorily conspicuous and executively easy for their newborns. Females' strategy to increase the conspicuousness of nipples could only exploit the newborns' most advanced and conserved sensory systems, touch and olfaction, and selection has accordingly shaped tactilely and olfactorily conspicuous mammary structures.…

MESH: Olfactory PerceptionMESH: Animals Suckling[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[ SCCO.PSYC ] Cognitive science/PsychologyMESH: Mammary Glands HumanMESH : PheromonesPheromonesmother milkWALLABY MACROPUS-EUGENIIMESH: SmellMESH : FemaleMESH: AnimalsMESH: PheromonesMESH: Milk Humannewborn rabbittransnatal olfactory continuityMESH: Mammary Glands AnimalMESH : InfantMESH : Feeding BehaviorMESH: Pheromones HumanMESH : AdultMESH : Milk HumanMESH : OdorsMESH: InfantMother-Child RelationsAnimals Sucklingnipple-attachment behaviorSmellMESH : Mother-Child RelationsBreast FeedingMilkMESH: Breast Feeding[SCCO.PSYC] Cognitive science/Psychology[SCCO.PSYC]Cognitive science/PsychologyMESH: Feeding BehaviorFemaleCuesMESH: Animal CommunicationAdultMESH: LactationMESH: Mother-Child RelationswallabyPheromones HumanRAT PUPSamniotic-fluidMESH : Mammary Glands AnimalMESH : Mammary Glands HumanNEWBORN RABBITSMESH : Animals SucklingMammary Glands AnimalMESH : Olfactory PerceptionAnimalsHumansLactationMammary Glands Humanprenatal flavor exposureMESH: OdorsMESH: HumansMESH : CuesMilk HumanMESH : LactationMESH : Humansbreast-milkInfantMESH: AdultFeeding Behaviormajor urinary proteinOlfactory PerceptionAnimal CommunicationMESH: Milk[SDV.AEN] Life Sciences [q-bio]/Food and NutritionMOTHERS MILKMESH : MilkMESH : Breast FeedingOdorantsrat pupMESH : SmellMESH : AnimalsMESH : Pheromones Humanmacropus-eugeniiMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Animal CommunicationMESH: Cues
researchProduct

Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism

2013

BackgroundWhether the oral factor Xa inhibitor edoxaban can be an alternative to warfarin in patients with venous thromboembolism is unclear. MethodsIn a randomized, double-blind, noninferiority study, we randomly assigned patients with acute venous thromboembolism, who had initially received heparin, to receive edoxaban at a dose of 60 mg once daily, or 30 mg once daily (e.g., in the case of patients with creatinine clearance of 30 to 50 ml per minute or a body weight below 60 kg), or to receive warfarin. Patients received the study drug for 3 to 12 months. The primary efficacy outcome was recurrent symptomatic venous thromboembolism. The principal safety outcome was major or clinically re…

MESH: Pulmonary EmbolismMale[SDV]Life Sciences [q-bio]Kaplan-Meier Estimate030204 cardiovascular system & hematologylaw.inventionMESH: Venous Thromboembolismchemistry.chemical_compound0302 clinical medicineRandomized controlled trialEdoxabanlawMESH: Double-Blind Method030212 general & internal medicineMESH: WarfarinMESH: AgedMESH: Middle AgedHazard ratioGeneral MedicineVenous ThromboembolismMiddle AgedThrombosis3. Good healthPulmonary embolismAnesthesiaFemaleAnticoagulants EdoxabanMESH: HemorrhageAndexanet alfamedicine.drugMESH: EnoxaparinHemorrhageMESH: AnticoagulantsMESH: Drug Administration ScheduleDrug Administration Schedule03 medical and health sciencesDouble-Blind MethodAged; Anticoagulants; Double-Blind Method; Drug Administration Schedule; Enoxaparin; Female; Hemorrhage; Humans; Kaplan-Meier Estimate; Male; Middle Aged; Pulmonary Embolism; Venous Thromboembolism; WarfarinmedicineHumansEnoxaparinAdverse effectMESH: Kaplan-Meier EstimateAgedMESH: Humansbusiness.industryWarfarinAnticoagulantsmedicine.diseaseMESH: MalechemistryWarfarinbusinessPulmonary EmbolismMESH: FemaleNew England Journal of Medicine
researchProduct

Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue.

2014

International audience; Regulatory T cells (Tregs) can be considered as a mixed population of distinct subsets, endowed with a diverse extent and quality of adaptation to microenvironmental signals. Here, we uncovered an opposite distribution of Treg expansion, phenotype, and plasticity in different microenvironments in the same organ (liver) derived from patients with chronic hepatitis C: On the one side, cirrhotic and tumor fragments were moderately and highly infiltrated by Tregs, respectively, expressing OX40 and a T-bet high IFN-c – " T-helper (Th)1-suppressing " phenotype; on the other side, noncirrhotic liver specimens contained low frequencies of Tregs that expressed low levels of O…

MESH: Receptors OX40/metabolism*MESH: Interleukin-12/metabolismLiver CirrhosisMaleMacrophagemedicine.disease_causeMESH: Carcinoma Hepatocellular/immunology*T-Lymphocytes RegulatoryMESH: OX40 Ligand/metabolism0302 clinical medicineMESH: Aged 80 and overMESH: T-Lymphocytes Regulatory/physiology*MESH: Up-RegulationOX40MESH: AgedAged 80 and over0303 health scienceseducation.field_of_studyT REGMESH: Middle AgedMedicine (all)MESH: Liver Cirrhosis/immunology*Liver Neoplasmshemic and immune systemsMiddle AgedMESH: Liver Neoplasms/immunology*PhenotypeHepatitis CInterleukin-123. Good healthUp-RegulationPhenotypeLiver Neoplasm[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyInterleukin 12[SDV.IMM]Life Sciences [q-bio]/ImmunologyFemalemedicine.symptomMESH: Hepatitis C/immunology*OX40; T REG; HEPATITIS C VIRUSHumanmedicine.medical_specialtyCarcinoma HepatocellularHepatitis C virusLiver CirrhosiPopulationInflammationchemical and pharmacologic phenomena[SDV.CAN]Life Sciences [q-bio]/CancerOX40 LigandBiologyMESH: PhenotypeMESH: Liver Neoplasms/virology03 medical and health sciencesIkaros Transcription FactorDownregulation and upregulationInternal medicinemedicineHumansMESH: Macrophages/metabolismeducation030304 developmental biologyAgedMESH: HumansHepatologyMacrophagesHEPATITIS C VIRUSMESH: Carcinoma Hepatocellular/virologyHepatologyReceptors OX40MESH: Ikaros Transcription Factor/metabolismMESH: Hepatitis C/complicationsMESH: MaleOX40 ligandImmunologyMESH: Liver Cirrhosis/virologyMESH: Female030215 immunology
researchProduct

Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 deficiency reduces leukocyte infiltration into adipose tissue and favors fat deposi…

2009

1525-2191 (Electronic) Journal Article; Obesity is associated with low-grade inflammation and leukocyte infiltration in white adipose tissue (WAT) and is linked to diabetic complications. Semicarbazide-sensitive amine oxidase, also known as vascular adhesion protein-1 (SSAO/VAP-1), is a membrane protein that is highly expressed in adipocytes and is also present on the endothelial cell surface where it is involved in leukocyte extravasation. We studied fat deposition and leukocyte infiltration in WAT of mice with a null mutation in the amine oxidase copper-containing-3 (AOC3) gene encoding SSAO/VAP-1. Both epididymal and inguinal WATs were larger in 6-month-old AOC3-KO males than in age-matc…

MESH: SemicarbazidesAOC3Obesity/geneticsAdipose tissueMESH: Flow CytometryWhite adipose tissueInbred C57BLMESH: Mice KnockoutTransgenicMiceLeukocytesMESH: ObesityMESH: AnimalsMice KnockoutAmine oxidase (copper-containing)food and beveragesNatural killer T cellFlow CytometryLeukocyte extravasationSemicarbazidesCell Adhesion Molecules/*deficiency/*geneticsAdipose TissueMESH: Cell Adhesion MoleculesLeukocytes/*physiologyAmine Oxidase (Copper-Containing)medicine.symptomInfiltration (medical)MESH: Adipose Tissuemedicine.medical_specialtyMESH: Mice TransgenicKnockoutMice TransgenicInflammation[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyMESH: Monoamine OxidasePathology and Forensic MedicineMESH: LeukocytesMonoamine Oxidase/*deficiencyMESH: Mice Inbred C57BLInternal medicinemedicineAnimalsHumansObesityMonoamine OxidaseMESH: Mice[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMESH: HumansAmine Oxidase (Copper-Containing)/*deficiency/*geneticsmedicine.diseaseAdipose Tissue/pathology/*physiologyMice Inbred C57BLEndocrinologyImmunologyMESH: Amine Oxidase (Copper-Containing)Semicarbazides/*pharmacologyCell Adhesion MoleculesRegular Articles
researchProduct

Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics.

2013

Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we …

MESH: Sequence Analysis DNAsequence analysisSwineSus scrofa[SHS.ANTHRO-BIO]Humanities and Social Sciences/Biological anthropologyinsightsshapephylogeography01 natural sciences11. SustainabilityexpansionsMESH: AnimalswildNeolithicMESH: Swineagriculture0303 health sciencesKUL-METH-ArchaeologyMESH: AsiaPig domesticationmitochondrialEuropeDomestic pigMESH: PhylogeographyAnimals DomestichistoryMESH: Molareuropewild boar010506 paleontologyKUL-CoE-CASoriginsAsialikelihoodneolithic; phylogeography; pig domestication; wild boar; animal distribution; animals; animals domestic; Asia; DNA mitochondrial; Europe; humans; molar; phylogeography; sequence analysis DNA; Sus scrofa; SwineZoologypig domesticationfarmersBiologyNeolithic.Animal Breeding and GenomicsSettore BIO/08Wild boarDNA Mitochondrial03 medical and health sciencesWild boarBronze Agebiology.animalGeneticsdomesticAnimalsHumansFokkerij en GenomicaMESH: Animals DomesticDomesticationMolecular BiologyEcology Evolution Behavior and SystematicsDiscoveries030304 developmental biology0105 earth and related environmental sciencesMESH: Humans[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE]MESH: Animal DistributionMESH: DNA MitochondrialDNASequence Analysis DNAMolarMESH: Sus scrofaAncient DNAIron AgeWIASBiological dispersalMESH: EuropeAnimal DistributionChronology
researchProduct

Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

2012

International audience; Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabdit…

MESH: Signal TransductionMESH: InflammationAgingAnatomy and PhysiologyAntioxidantMouseNon-Clinical MedicineApplied Microbiologymedicine.medical_treatment[SDV]Life Sciences [q-bio]MESH: HT29 Cellslcsh:Medicinemedicine.disease_causelaw.inventionMiceProbiotic0302 clinical medicinelawLactobacillusMESH: ColitisInsulinMESH: Animalslcsh:ScienceCaenorhabditis elegans2. Zero hunger0303 health sciencesMultidisciplinaryMESH: Oxidative StressbiologyMESH: Reactive Oxygen SpeciesForkhead Transcription FactorsAnimal ModelsMESH: Transcription FactorsMESH: Caenorhabditis elegans ProteinsColitis3. Good healthMESH: Trinitrobenzenesulfonic Acid[SDV] Life Sciences [q-bio]MESH: LongevityMedicineFemaleHT29 CellsResearch ArticleBiotechnologySignal TransductionMESH: Receptor Insulinmedicine.drug_classLongevityMESH: InsulinMicrobiologyAnti-inflammatoryMicrobiologyIndustrial Microbiology03 medical and health sciencesMESH: Gene Expression ProfilingModel OrganismsSpecies SpecificityLactobacillus rhamnosusMESH: Caenorhabditis elegansmedicineAnimalsHumansMESH: Species SpecificityCaenorhabditis elegansCaenorhabditis elegans ProteinsBiologyMESH: Mice030304 developmental biologyInflammationHealth Care PolicyMESH: HumansGene Expression ProfilingProbioticslcsh:Rbiology.organism_classificationReceptor InsulinLactobacillusOxidative StressTrinitrobenzenesulfonic AcidQuality of Lifelcsh:QPhysiological ProcessesReactive Oxygen SpeciesMESH: LactobacillusMESH: Female030217 neurology & neurosurgeryOxidative stressBacteriaMESH: ProbioticsTranscription Factors
researchProduct