Search results for "METASTABILITY"
showing 10 items of 262 documents
A new improved synthesis of the 110 K bismuth superconducting phase: freeze-drying of acetic solutions
1992
Abstract Metastability has greatly hindered the separated synthesis of the high-temperature superconducting phases represented as (Bi1−x, Pbx)2Sr2Can−1CunO4 + 2n (n = 2, 2-2-1-2, Tc≈80 K, and n = 3, 2-2-2-3, Tc≈110 K). By careful control of the synthetic variables, it becomes possible to obtain the 110 K phase as the only superconducting one through processing of freeze-dried acetic solutions. This technique leads to homogeneously sized (5–10 μm) micaceous platelets of the superconducting material.
Inside Back Cover: N ‐Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J‐ and H‐Aggregates (Ange…
2020
Innenrücktitelbild: N ‐Annulated Perylene Bisimides to Bias the Differentiation of Metastable Supramolecular Assemblies into J‐ and H‐Aggregates (Ang…
2020
Differentiation of isomeric cyclic diamides by electron impact mass spectra
1976
The behaviour under electron impact of two series of isomeric cyclopentane- and cyclohexane-1, 2- and -1, 3-dicarboxylic acid dipiperidides was studied. Diagnostic fragmentation pathways were found to differentiate the isomeric diamides. Additional evidence was obtained from the metastable transitions.
Solubility-Driven Isolation of a Metastable Nonagold Cluster with Body-Centered Cubic Structure.
2020
The conventional synthetic methodology of atomically precise gold nanoclusters using reduction in solutions offers only thermodynamically most stable nanoclusters. We report herein a solubility‐driven isolation strategy to access the synthesis of a metastable gold cluster. The cluster, with the composition of [Au 9 (PPh 3 ) 8 ] + ( 1 ), displays an unusual, nearly perfect body‐centered‐cubic (bcc) structure. As revealed by ESI‐MS and UV/Vis measurement, the cluster is metastable in solution and converts to the well‐known [Au 11 (PPh 3 ) 8 Cl 2 ] + ( 2 ) within just 90 min. DFT calculations revealed that while both 1 and 2 are eight‐electron superatoms, there is a driving force to convert 1 …
The [Fe(etz)6](BF4)2 Spin-Crossover System—Part One: High-Spin ⇌ Low-Spin Transition in Two Lattice Sites
1996
The [Fe(etz),](BF,), spin-cross-over system (etz = 1-ethyl-1 H-tetrazole) crystallizes in space group P1, with the following lattice constants at 298 K: a 10.419(3), b=15.709(1), c = 18.890(2) A = = 71.223(9), =77.986(10), and = 84.62(1)° V = 2862.0(9) A3 and Z = 3. Two nonequivalent lattice sites, one without (site A) and one with (site B) inversion symmetry, are observed. The population of the two sites nA:nB is 2:l. Iron(II) on site A undergoes a thermal low-spin (LS) high-spin (HS) transition with T1/2I, = 105 K. whereas that on site B remains in the high-spin state down to cryogenic temperatures. Application of external pressure of up to 1200 bar between 200 and 60 K does not cause for…
Lifetime measurements of the 3D3/2 and 3D5/2 metastable states in CaII
1993
The lifetime of the metastable 3D3/2 and 3D5/2 states of Ca+ ions is determined in a r.f. ion trap by laser excitation of this levels and subsequent time delayed probing of the state population by a second laser. In a buffer gas atmosphere of about 10−5−10−6 mbar of He we observe quenching to the ground state and strong finestructure mixing of the two D-states. This mixing allowes only the determination of the combined lifetime. Our result of τ(3D)=1.24(39) s is in good agreement with theoretical calculations.
Energy transfer in diiodoBodipy-grafted upconversion nanohybrids.
2015
Steady-state and time-resolved emission studies on nanohybrids consisting of NaYF4:Yb,Er and a diiodo-substituted Bodipy (UCNP-IBDP) show that the Yb(3+) metastable state, formed after absorption of a near-infrared (NIR) photon, can decay via two competitive energy transfer processes: sensitization of IBDP after absorption of a second NIR photon and population of Er(3+) excited states.
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
2015
The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charg…
Triggering a transient organo-gelation system in a chemically active solvent
2021
A transient organo-gelation system with spatiotemporal dynamic properties is described. Here, the solvent actively controls a complex set of equilibria that underpin the dynamic assembly event. The observed metastability is due to the in situ formation of a secondary solvent, acting as an antagonist against the primary solvent of the organogel. peerReviewed