Search results for "MIXER"
showing 10 items of 15 documents
Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials
2011
International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…
Time-resolved velocity measurements in a magnetic micromixer
2015
Abstract Mixing efficiency is lower in passive micromixers due to viscous forces and substantial research effort is focused on designing high performance micromixers. Active micromixers make use of external forces to enhance mixing efficiency. Among these, magnetic forces are popular because they are non-contact and therefore the micromixer design can be kept simple. Laser-based diagnostic tools have great potential in providing multi-parameter information in microfluidics research on mixing. MicroPIV experiments are performed to investigate the transient flow field in a magnetic micromixer undergoing labyrinthine instability. Velocity and interface front information is extracted from a seq…
Design and fabrication of an acoustic micromixer for biological media activation
2014
International audience; The bioassay of infinitesimal quantities of protein markers in biological samples is the way to early cancer detection. However, this detection can be limited by the diffusion of these macromolecules (analytes) from the bulk to the sensor chip (surface of ligands). Here, we propose a new method to overcome this drawback by the activation of the biological media during the detection step. The principle consists in using ultrasonic vibrations in order to disrupt the equilibrium states of such biomolecular reactions and performing simultaneous detection inside an acoustic micromixer. Technological realization and initial characterizations of the device have been perform…
Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing
2018
Ammonium persulfate has been known as an agent for obtaining nanocellulose in recent years, however most research has focused on producing cellulose nanocrystals. A lack of research about combined ammonium persulfate oxidation and common mechanical treatment in order to obtain cellulose nanofibrils has been identified. The objective of this research was to obtain and investigate carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment. Light microscopy, atomic force microscopy (AFM), powder X-Ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Zeta potential measure…
Simulating Copolymeric Nanoparticle Assembly in the Co-solvent Method: How Mixing Rates Control Final Particle Sizes and Morphologies
2018
Abstract The self-assembly of copolymeric vesicles and micelles in micromixers is studied by External Potential Dynamics (EPD) simulations – a dynamic density functional approach that explicitly accounts for the polymer architecture both at the level of thermodynamics and dynamics. Specifically, we focus on the co-solvent method, where nanoparticle precipitation is triggered by mixing a poor co-solvent into a homogeneous copolymer solution in a micromixer. Experimentally, it has been reported that the flow rate in the micromixers influences the size of the resulting particles as well as their morphology: At small flow rates, vesicles dominate; with increasing flow rate, more and more micell…
Ionic Liquids on Demand in Continuous Flow
2009
We report on the development of an alternative protocol for the facile, solvent-free synthesis of various novel imidazolium-based ionic liquids (ILs) that affords highly pure products without the necessity of subsequent purification steps. The continuous approach is based on the combination of HPLC pumps with a micromixer and a capillary residence tube. Our system provides a high degree of control over the alkylation reactions due to a high surface-to-volume ratio and superior heat and mass transport. Within the scope of our studies, we focused on ionic liquids containing differently substituted phenyl rings and characterized these compounds with respect to further use for direct applicatio…
Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
2023
For many years, convolutional neural networks dominated the field of computer vision, not least in the medical field, where problems such as image segmentation were addressed by such networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision through ViTs seems to have changed the trend of using standard convolutions. Throughout this work, we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance on a medical semantic segmentation problem. All the models have been trained from scratch on the DRIVE dataset and evaluated on their private counterparts to assess which of the models performed better in the segmentatio…
Continuously manufactured magnetic polymersomes--a versatile tool (not only) for targeted cancer therapy.
2013
Micromixer technology was used to prepare polymeric vesicles (Pluronic® L-121) dual loaded with the anti-cancer drug camptothecin and magnetic nanoparticles. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy. Dynamic light scattering measurements showed a relatively narrow size distribution of the hybrid polymersomes. Camptothecin polymersomes reduced the cell viability of prostate cancer cells (PC-3) measured after 72 h significantly, while drug-free polymersomes showed no cytotoxic effects. Covalent attachment of a cancer targeting peptide (bombesin) as well as a fluorescent label (Alexa Fluor® 647) to the hybrid polymersomes was perf…
Development of a gas chromatography-mass spectrometry method for the determination of ultraviolet filters in beach sand samples
2014
An analytical method for the determination of eight fat-soluble ultraviolet (UV) filters in beach sand samples is presented for the first time. The method is based on a leaching process of the target compounds from sand samples using vortex mixer agitation and further centrifugation, followed by dispersive liquid–liquid microextraction (DLLME) of the supernatant and gas chromatography-mass spectrometry (GC-MS) analysis of the DLLME extract. The variables involved in the leaching and in the DLLME processes were studied to provide the best enrichment factors. In the first case, the leaching solvent type and volume, and the vortex mixer agitation time were studied. In the case of the DLLME, th…
Living Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene
2014
We describe the living anionic polymerization of 2-vinylpyridine (2VP) and styrene (S) in continuous flow, comparing two micromixing devices with different mixing principles. The use of a continuous flow setup reduces the experimental effort for living anionic polymerizations significantly, compared to a conventional batch system. By adjusting the ratio of the flow rates of the monomer and initiator solutions a variety of different molecular weights can be rapidly synthesized within several minutes, using one setup. Additionally, a comparison of the influence of the two different mixing devices—an interdigital micromixer (SIMM-V2) leading to laminar mixing and a tangential four-way jet mixi…