Search results for "MOTILITY"
showing 10 items of 303 documents
Pharmacological characterization of uracil nucleotide-preferring P2Y receptors modulating intestinal motility: a study on mouse ileum.
2011
We investigated the possible modulation of the intestinal contractility by uracil nucleotides (UTP and UDP), using as model the murine small intestine. Contractile activity of a mouse ileum longitudinal muscle was examined in vitro as changes in isometric tension. Transcripts encoding for uracil-sensitive receptors was investigated by RT-PCR. UDP induced muscular contractions, sensitive to PPADS, suramin, or MRS 2578, P2Y(6) receptor antagonist, and mimicked by PSB 0474, P2Y(6)-receptor agonist. UTP induced biphasic effects characterized by an early inhibition of the spontaneous contractile activity followed by muscular contraction. UTP excitatory effects were antagonized by PPADS, suramin,…
Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum
2009
Background and purpose Although it is well accepted that cannabinoids modulate intestinal motility by reducing cholinergic neurotransmission mediated by CB(1) receptors, it is not known whether the endocannabinoids are involved in more complex circuits and if they interact with other systems. The aim of the present study was to examine possible interactions between cannabinoid CB(1) receptors and purines in the control of spontaneous contractility of longitudinal muscle in mouse ileum. Experimental approach The mechanical activity of longitudinally oriented ileal segments from mice was recorded as isometric contractions. Key results The selective CB(1) receptor agonist, N-(2-chloroethyl)5,8…
Involvement of tachykinin NK2 receptors in the modulation of spontaneous motility in rat proximal colon.
2000
The role of endogenous tachykinins and the mechanisms whereby they act on NK2 receptors, modulating spontaneous motility, were investigated in rat isolated proximal colon. The mechanical activity was detected as changes in intraluminal pressure. The NK2 receptor antagonist, MEN 10627, produced a concentration-dependent reduction of the contraction amplitude. [beta-Ala8]-neurokinin A(4-10), an NK2 receptor agonist, and [Sar9, Met(O2)11]-Substance P ([Sar9, Met(O2)11]-SP), an NK1 receptor agonist, induced a concentration-dependent contractile response, characterized by an increase in basal tone with superimposed phasic contractions. MEN 10627 antagonized the response to [beta-Ala8]-neurokinin…
Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation.
2014
We have previously demonstrated that menthol reduces murine gastric tone in part through a neural mechanism, involving adrenergic pathways and reduction of ongoing release of acetylcholine from enteric nerves. In the present study we aimed to verify whether the gastric relaxation to menthol may be triggered by interaction with neural receptors or ionic channels proteins, such as transient receptor potential (TRP)-melastatin8 (TRPM8), TRP-ankyrin 1 (TRPA1), 5-hydroxytriptamine 3 (5-HT3) receptor or cholinergic nicotinic receptors. Spontaneous mechanical activity was detected in vitro as changes in intraluminal pressure from isolated mouse stomach. Menthol (0.3-30 mM) induced gastric relaxati…
Poor Esophageal Motility: A Tailored Approach?
2014
New onset dysphagia following antireflux surgery is among the most undesirable side effects of an otherwise excellent therapy. While its cause is multifactorial, insufficient circular muscle strength of the esophageal body, not powerful enough to force the bolus through the distal neo-high pressure zone, can be a component of the pathophysiology. The relative merits of “tailoring” the degree of fundoplication based upon esophageal body motility and/or other clinical features have been debated for decades. Herein we discuss the rationale for a tailored approach, its pros and cons and review data published to date available to guide the clinician in individual patient decision-making.
APHAMAX® ATTENUATES INFLAMMATORY AND OXIDATIVE STRESS IN 2, 4-DINITROBENZENE SULFONIC ACID-INDUCED COLITIS IN RAT AMELIORATING INTESTINAL FUNCTIONALI…
2021
Accumulating evidences indicate that inflammatory and oxidative stress play an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). In IBD the excessive production of reactive oxygen species (ROS) and nitrogen metabolites contribute to tissue injury and could have also a profound impact on gut functions, including motility. We characterised the inflammatory and oxidative condition and the impact on colon motility in an experimental rat model of colitis, the 2, 4-dinitrobenzene sulfonic acid (DNBS)- induced colitis, and we evaluated if oral treatment with a nat- ural extract of Aphanizomenon flos-aquae (AFA) AphaMax®, containing concentrated quantity of AFA…
Effects of Atropine on Acetylcholine Overflow from Perfused Chicken Hearts
1978
Isolated chicken hearts were perfused (20 ml/min) with Tyrode’s solution. Release of acetylcholine (ACh) was evoked either by electrical stimulation (1 ms; 15 mA) of both preganglionic vagus nerves or by perfusion with dimethylphenylpiperazinium (DMPP). ACh was extracted from the perfusates by ion-pair extraction and determined by gas chromatography.
Evidence for the presence of functional protease activated receptor 4 (PAR4) in the rat colon
2004
Background and aims: Protease activated receptors (PARs) have been postulated to play a role during intestinal inflammation. The presence and role played by PAR4 in gastrointestinal functions have not been fully clarified. The aims of this study were: (i) to examine expression of PAR4 in rat proximal colon; (ii) to determine the mechanical effects induced by PAR4 activation in longitudinal muscle; and (iii) to characterise the underlying mechanisms. Methods: PAR4 expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Mechanical activity was recorded as changes in isometric tension. Results: A PCR product corresponding to the predicted…
Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon
2013
The aim of this study was to analyze whether arginine vasopressin (AVP) may be considered a modulator of intestinal motility. In this view, we evaluated, in vitro, the effects induced by exogenous administration of AVP on the contractility of mouse distal colon, the subtype(s) of receptor(s) activated and the action mechanism. Isometric recordings were performed on longitudinal and circular muscle strips of mouse distal colon. AVP (0.001 nM-100 nM) caused concentration-dependent contractile effects only on the longitudinal muscle, antagonized by the V1 receptor antagonist, V-1880. AVP-induced effect was not modified by tetrodotoxin, atropine and indomethacin. Contractile response to AVP was…
Primary peristalsis in pigeon cervical oesophagus: two EMG patterns.
1984
Swallowing elicits two propagated EMG peristaltic patterns in pigeon cervical oesophagus: i) "simple" peristaltic pattern and ii) "complex" peristaltic pattern. "Simple" peristaltic pattern is characterized by an intense, long-lasting burst of spikes, high in amplitude with an aboral increasing delay in onset. "Complex" peristaltic pattern presents an early short period of reduction in spontaneous electrical activity, followed by an excitatory period similar to that of "simple" pattern. The early inhibitory component has a very short delay in onset increasing aborally. Atropine abolishes the EMG excitatory component of both patterns, while the inhibitory period persists, showing increased d…