Search results for "Magnet"
showing 10 items of 15436 documents
Paramagnetic germanium-related centers induced by energetic radiation in silica based devices
2009
Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes
2016
Under heavy-ion exposure at sufficiently high reverse bias voltages silicon carbide (SiC) Schottky diodes are observed to exhibit gradual increases in leakage current with increasing ion fluence. Heavy-ion exposure alters the overall reverse current-voltage characteristics of these diodes, leaving the forward characteristics practically unchanged. This paper discusses the charge transport mechanisms in the heavy-ion damaged SiC Schottky diodes. A macro model, describing the reverse current-voltage characteristics in the degraded SiC Schottky diodes is proposed. peerReviewed
Effect of the Si doping on the properties of AZO/SiC/Si heterojunctions grown by low temperature pulsed laser deposition
2020
Abstract The structural and photoelectrical properties of Al-doped ZnO (AZO)/SiC/p-Si and AZO/SiC/n-Si heterojunctions, fabricated at low temperature by pulsed laser deposition, were investigated by means of a number of techniques. Raman analysis indicates that SiC layers have the cubic 3C-SiC phase, whilst X-ray diffraction measurements show that AZO films exhibit a hexagonal wurtzite structure, highly textured along the c-axis, with average crystallites size of 35.1 nm and lattice parameter c of 0.518 nm. The homogeneous and dense surface morphology observed by scanning electron microscopy was confirmed by atomic force microscopy images. Moreover, UV–Vis-NIR spectra indicated a high trans…
Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations
2015
We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure…
Materials for depollution based on the model of manganese dioxygenase
2013
La utilización intensiva de pesticidas ha traído consigo la presencia de una gran cantidad de moléculas contaminantes en aguas y suelos. Los tratamientos para degradar estas moléculas son caros, por lo que es de gran interés la búsqueda de soluciones más baratas. En el caso de los catecoles, existen enzimas, las catecol-dioxigenasas, que abren el ciclo aromático por oxidación con dioxígeno. Las condiciones suaves y la gran disponibilidad de este oxidante podrían ofrecer una solución para esos problemas de polución. El objetivo de este trabajo de tesis es mimetizar un tipo particular de dioxigenasa, la dioxigenasa de manganeso. Dado que tanto la primera esfera de coordinación como la segunda…
A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles
2019
Abstract Hypothesis Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles. Experiments We st…
Variable kinematics models for multilòayered smart plates
2015
Families of layer-wise and equivalent single layer advanced finite elements for the geometrically nonlinear analysis of smart multilayered plates are formulated in a unified framework. The proposed modeling strategy reduces the multifield problems to an effective mechanical plate by the condensation of the electromechanical state into the plate kinematics, which is assumed as a variable order expansion along the plate thickness. Numerical results are presented to validate the proposed modeling approach and finite elements and to investigate their features.
Cabine secondarie: nodi intelligenti e sicuri delle smart grid
2015
Nel futuro panorama delle Smart Grid, le cabine secondarie assumeranno il ruolo di nodi intelligenti e sicuri della rete di distribuzione, integrando diverse soluzioni innovative di monitoraggio, comunicazione, controllo e richiedendo maggiori caratteristiche di sicurezza come proposto nei due progetti di ricerca REIPERSEI e NewCabElarc
The Influence of Industrial Waste on the Magnetic Properties of Salt-Affected Soils from Two Soda Ash Manufacturing Sites
2021
The aim of this study was to characterize the impact of soda ash manufacturing on the magnetic properties of soils located in the agricultural landscape in north-central Poland. Two study sites were chosen: Mątwy (SM) and Janikowo (SJ). Highly saline soils with halophyte communities were selected in order to develop an understanding of the relationship between salinization of water–soil interface and the potential contamination risk of the environment. Basic chemical and physicochemical properties of topsoil (0–25 cm) and water (surface and groundwater) samples from five locations were characterized. The characteristics of soil contamination were based on the content of sel…
Fabrication and Characterization of Dye-Sensitized Solar Cells
2014
Among the next-generation solar cells, a predominant role is played by Dye sensitized solar cells (DSSC) based on ruthenium complexes as sensitizers. They take advantage of a photoelectrochemical system to transform solar radiation into electric energy. In fact, DSSCs represent a cost-effective alternative to traditional silicon-based photovoltaic devices and they do not require expensive and sophisticated apparatus for their fabrication. In this work, we have produced and tested ruthenium DSSCs. In particular, we have measured the main parameters of these cells, such as the electrical and power performances and the efficiency levels, at different irradiance levels and at different incident…