Search results for "Mannosyltransferases"
showing 6 items of 6 documents
Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular proces…
2018
This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence f…
Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting…
2017
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that t…
Dom34 Links Translation to Protein O-mannosylation.
2016
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimu…
Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut.
2018
International audience; Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 geneti…
Gene within gene configuration and expression of the Drosophila melanogaster genes lethal(2) neighbour of tid [l(2)not] and lethal(2) relative of tid…
1997
In this paper, we describe the structure and temporal expression pattern of the Drosophila melanogaster genes l(2)not and l(2)rot located at locus 59F5 vis a vis the tumor suppressor gene l(2)tid described previously and exhibiting a gene within gene configuration. The l(2)not protein coding region, 1530 nt, is divided into two exons by an intron, 2645 nt, harboring the genes l(2)rot, co-transcribed from the same DNA strand, and l(2)tid, co-transcribed from the opposite DNA strand, located vis a vis. To determine proteins encoded by the genes described in this study polyclonal rabbit antibodies (Ab), anti-Not and anti-Rot, were generated. Immunostaining of developmental Western blots with t…
Mannosyl transferases inSaccharomyces cerevisiae: Evidence for the occurrence of ectomannosyltransferase activity
1981
The subcellular distribution of mannosyltransferases inSaccharomyces cerevisiae was studied following the separation of the plasma membrane from other intracellular membranous systems. Most of the activity was linked to internal membranes, and the rest was located at the level of the plasma membrane. Yeast plasma membranes coated on their external face with concanavalin A when incubated with GDP-[U-14C]mannose incorporated 20% less [U-14C]mannose in glycoproteins and 110% more in glycolipids than plasma membranes alone. This suggested that part of the total mannosyltransferase activity of the plasma membrane is located on its outer surface. A significant incorporation of radioactive mannose…