Search results for "Markov"
showing 10 items of 628 documents
Multi-Phase epidemic model by a Markov chain
2008
Abstract In this paper we propose a continuous-time Markov chain to describe the spread of an infective and non-mortal disease into a community numerically limited and subjected to an external infection. We make a numerical simulation that shows tendencies for recurring epidemic outbreaks and for fade-out or extinction of the infection.
Establishing some order amongst exact approximations of MCMCs
2016
Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …
Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?
2011
The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[ S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away …
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
2017
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…
Explicit, identical maximum likelihood estimates for some cyclic Gaussian and cyclic Ising models
2017
Cyclic models are a subclass of graphical Markov models with simple, undirected probability graphs that are chordless cycles. In general, all currently known distributions require iterative procedures to obtain maximum likelihood estimates in such cyclic models. For exponential families, the relevant conditional independence constraint for a variable pair is given all remaining variables, and it is captured by vanishing canonical parameters involving this pair. For Gaussian models, the canonical parameter is a concentration, that is, an off-diagonal element in the inverse covariance matrix, while for Ising models, it is a conditional log-linear, two-factor interaction. We give conditions un…
On the derivation of a linear Boltzmann equation from a periodic lattice gas
2004
We consider the problem of deriving the linear Boltzmann equation from the Lorentz process with hard spheres obstacles. In a suitable limit (the Boltzmann-Grad limit), it has been proved that the linear Boltzmann equation can be obtained when the position of obstacles are Poisson distributed, while the validation fails, also for the "correct" ratio between obstacle size and lattice parameter, when they are distributed on a purely periodic lattice, because of the existence of very long free trajectories. Here we validate the linear Boltzmann equation, in the limit when the scatterer's radius epsilon vanishes, for a family of Lorentz processes such that the obstacles have a random distributio…
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
2020
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the sug…
Bayesian assessment of times to diagnosis in breast cancer screening
2008
Breast cancer is one of the diseases with the most profound impact on health in developed countries and mammography is the most popular method for detecting breast cancer at a very early stage. This paper focuses on the waiting period from a positive mammogram until a confirmatory diagnosis is carried out in hospital. Generalized linear mixed models are used to perform the statistical analysis, always within the Bayesian reasoning. Markov chain Monte Carlo algorithms are applied for estimation by simulating the posterior distribution of the parameters and hyperparameters of the model through the free software WinBUGS.
Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model
2020
International audience; We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the…