Search results for "Mechanotransduction"

showing 10 items of 29 documents

Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor

2020

Drosophila suzukii is an invasive pest that prefers to lay eggs in ripening fruits, whereas most closely related Drosophila species exclusively use rotten fruit as oviposition site. This behaviour is allowed by an enlarged and serrated ovipositor that can pierce intact fruit skin, and by multiple contact sensory systems (mechanosensation and taste) that detect the optimal egg-laying substrates. Here, we tested the hypothesis that bristles present in the D. suzukii ovipositor tip contribute to these sensory modalities. Analysis of the bristle ultrastructure revealed that four different types of cuticular elements (conical pegs type 1 and 2, chaetic and trichoid sensilla) are present on the t…

0106 biological sciences0301 basic medicineMechanotransductionPhysiologyOvipositionSensory receptorBristleMechanotransduction CellularElectron01 natural sciences03 medical and health sciencesMicroscopy Electron TransmissionSpecies Specificitycomparative RNA-seqMelanogasterAnimalsTransmissionScanningSensillaDrosophila suzukiiDrosophilaMicroscopybiologyMechanosensationfungiTaste Perceptionbiology.organism_classificationultrastructureCell biology010602 entomology030104 developmental biologySettore AGR/11 - ENTOMOLOGIA GENERALE E APPLICATAmechanosensitive bristlesInsect ScienceMicroscopy Electron ScanningOvipositorspotted wing drosophilaDrosophilaFemaleMechanosensitive channelsCellularJournal of Insect Physiology
researchProduct

Breast Cancer Organoids Model Patient-Specific Response to Drug Treatment

2020

Tumor organoids are tridimensional cell culture systems that are generated in vitro from surgically resected patients&rsquo

0301 basic medicineCancer ResearchMechanotransductionBreast cancer; Dasatinib; Drug testing; Heterogeneity; Mechanotransduction; Patient‐derived tumor organoids; Statin; YAPPatient‐derived tumor organoidCellDasatinibDrug resistanceSettore MED/08 - Anatomia PatologicaBiologylcsh:RC254-282Article03 medical and health sciencesBreast cancer0302 clinical medicineBreast cancerbreast cancermedicineOrganoidSettore MED/05 - Patologia Clinicadasatinibdrug testingmechanotransductionpatient-derived tumor organoidsGenetic heterogeneitystatinStatinDrug testingBreast cancerDasatinib Drug testing Drug testing Heterogeneity Patient‐derived tumor organoids Statin YAPmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensIn vitroDasatinib030104 developmental biologymedicine.anatomical_structureOncologyCell culture030220 oncology & carcinogenesisCancer researchPatient‐derived tumor organoidsYAPHeterogeneityheterogeneitymedicine.drugCancers
researchProduct

Integrating the Tumor Microenvironment into Cancer Therapy

2020

© 2020 by the authors.

0301 basic medicineCancer ResearchMechanotransductionReviewGut floralcsh:RC254-28203 medical and health sciences0302 clinical medicineImmune systemStromamedicineMechanotransductionStromal reprogrammingTumor microenvironmentbiologybusiness.industryMicrobiotaCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasebiology.organism_classificationPrognostic toolsMetforminMitochondria030104 developmental biologyMetabolismOncologyImmune therapyTumor progression030220 oncology & carcinogenesisCancer researchBiomarker discoverybusinessReprogrammingVitamin D3
researchProduct

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

Harnessing mechanosensation in next generation cardiovascular tissue engineering

2020

The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufact…

0301 basic medicineComputer sciencelcsh:QR1-502Review030204 cardiovascular system & hematologyBiochemistryCardiovascular SystemMechanotransduction Cellularlcsh:MicrobiologyCardiac regeneration03 medical and health sciences0302 clinical medicineTissue engineeringMechanosensingExtracellularAnimalsHumansMolecular BiologyTissue homeostasisMechanosensationTissue EngineeringExtracellular Matrix030104 developmental biologyCardiac regenerationNeuroscienceIntracellular
researchProduct

Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing

2016

AbstractCells’ ability to sense mechanical cues in their environment is crucial for fundamental cellular processes, leading defects in mechanosensing to be linked to many diseases. The actin cross-linking protein Filamin has an important role in the conversion of mechanical forces into biochemical signals. Here, we reveal how mutations in Filamin genes known to cause Larsen syndrome and Frontometaphyseal dysplasia can affect the structure and therefore function of Filamin domains 16 and 17. Employing X-ray crystallography, the structure of these domains was first solved for the human Filamin B. The interaction seen between domains 16 and 17 is broken by shear force as revealed by steered mo…

0301 basic medicineFilaminsScienceProtein domainPeptide bindingPlasma protein bindingmacromolecular substancesBiologyMolecular Dynamics SimulationFilaminmedicine.disease_causeBioinformaticsCrystallography X-RayOsteochondrodysplasiasMechanotransduction CellularArticlecomputational biophysics03 medical and health sciences0302 clinical medicineProtein DomainsmedicineHumansLarsen syndromeForeheadMechanotransductionNMR-spektroskopiaActinMutationMultidisciplinaryBinding SitesQRSAXSmedicine.diseasecytoskeletal proteinsActinsCell biologybody regions030104 developmental biologyMutationMedicine030217 neurology & neurosurgeryröntgenkristallografiaProtein Binding
researchProduct

2018

We use the myotendinous junction of Drosophila flight muscles to explore why many integrin associated proteins (IAPs) are needed and how their function is coordinated. These muscles revealed new functions for IAPs not required for viability: Focal Adhesion Kinase (FAK), RSU1, tensin and vinculin. Genetic interactions demonstrated a balance between positive and negative activities, with vinculin and tensin positively regulating adhesion, while FAK inhibits elevation of integrin activity by tensin, and RSU1 keeps PINCH activity in check. The molecular composition of myofibril termini resolves into 4 distinct layers, one of which is built by a mechanotransduction cascade: vinculin facilitates …

0301 basic medicineGeneral Immunology and MicrobiologybiologyChemistryGeneral NeuroscienceIntegrinmacromolecular substancesGeneral MedicineVinculinActin cytoskeletonFilaminGeneral Biochemistry Genetics and Molecular BiologyCell biologyFocal adhesion03 medical and health sciences030104 developmental biologybiology.proteinTensinbiological phenomena cell phenomena and immunityMechanotransductionMyofibrileLife
researchProduct

2020

Orthodontic tooth movement (OTM) creates compressive and tensile strain in the periodontal ligament, causing circulation disorders. Hypoxia-inducible factor 1α (HIF-1α) has been shown to be primarily stabilised by compression, but not hypoxia in periodontal ligament fibroblasts (PDLF) during mechanical strain, which are key regulators of OTM. This study aimed to elucidate the role of heparan sulfate integrin interaction and downstream kinase phosphorylation for HIF-1α stabilisation under compressive and tensile strain and to which extent downstream synthesis of VEGF and prostaglandins is HIF-1α-dependent in a model of simulated OTM in PDLF. PDLF were subjected to compressive or tensile stra…

0301 basic medicineIntegrinGenisteinProstaglandinCatalysisInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineUltimate tensile strengthPeriodontal fiberPhysical and Theoretical ChemistryMechanotransductionMolecular BiologySpectroscopybiologyKinaseOrganic Chemistry030206 dentistryGeneral MedicineComputer Science ApplicationsCell biology030104 developmental biologychemistrybiology.proteinPhosphorylationInternational Journal of Molecular Sciences
researchProduct

The EP300/TP53 pathway, a suppressor of the Hippo and canonical WNT pathways, is activated in human hearts with arrhythmogenic cardiomyopathy in the …

2021

Aim Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. Methods and results Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and 5 control samples were analyzed by RNA-S…

0301 basic medicinePhysiologyCardiomyopathy030204 cardiovascular system & hematologyBiologyMechanotransduction CellularBiological pathway03 medical and health sciences0302 clinical medicinePhysiology (medical)medicineHumansMechanotransductionEP300Wnt Signaling PathwayArrhythmogenic Right Ventricular DysplasiaHeart FailureHippo signaling pathwayWnt signaling pathwayArrhythmias CardiacOriginal Articlesmedicine.diseaseCell biologyDeath Sudden Cardiac030104 developmental biologyCardiomyopathy Gene expression Hippo pathway RNA-Sequencing TP53 WNT pathwayHeart failureTumor Suppressor Protein p53Signal transductionCardiomyopathiesCardiology and Cardiovascular MedicineE1A-Associated p300 ProteinCardiovascular Research
researchProduct

Advanced mechanotherapy: Biotensegrity  for governing metastatic tumor cell fate via modulating the extracellular matrix.

2021

Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferatio…

0303 health sciencesHippo signaling pathwayStromal cellChemistryPharmaceutical ScienceCell Differentiation02 engineering and technologyCell fate determination021001 nanoscience & nanotechnologyPhosphoproteinsMechanotransduction CellularCell biologyExtracellular MatrixExtracellular matrix03 medical and health sciencesMechanobiologyTumor progressionNeoplasmsHumansMechanotransduction0210 nano-technologyMechanotherapy030304 developmental biologyAdaptor Proteins Signal TransducingJournal of controlled release : official journal of the Controlled Release Society
researchProduct