Search results for "Melanogaster"
showing 10 items of 452 documents
Evolving Notch polyQ tracts reveal possible solenoid interference elements.
2016
ABSTRACTPolyglutamine (polyQ) tracts in regulatory proteins are extremely polymorphic. As functional elements under selection for length, triplet repeats are prone to DNA replication slippage and indel mutations. Many polyQ tracts are also embedded within intrinsically disordered domains, which are less constrained, fast evolving, and difficult to characterize. To identify structural principles underlying polyQ tracts in disordered regulatory domains, here I analyze deep evolution of metazoan Notch polyQ tracts, which can generate alleles causing developmental and neurogenic defects. I show that Notch features polyQ tract turnover that is restricted to a discrete number of conserved “polyQ …
In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models
2016
Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…
Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins.
2016
Background Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Results Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number …
Drosophila SMN2minigene reporter model identifies moxifloxacin as a candidate therapy for SMA
2018
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conser…
2016
AbstractGenetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ab…
Genetic regulation and function of epidermal growth factor receptor signalling in patterning of the embryonicDrosophilabrain
2016
The specification of distinct neural cell types in central nervous system development crucially depends on positional cues conferred to neural stem cells in the neuroectoderm. Here, we investigate the regulation and function of the epidermal growth factor receptor (EGFR) signalling pathway in early development of theDrosophilabrain. We find that localized EGFR signalling in the brain neuroectoderm relies on a neuromere-specific deployment of activating (Spitz, Vein) and inhibiting (Argos) ligands. Activated EGFR controls the spatially restricted expression of all dorsoventral (DV) patterning genes in a gene- and neuromere-specific manner. Further, we reveal a novel role of DV genes—ventral …
A Systematic Nomenclature for the Drosophila Ventral Nerve Cord.
2020
Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor…
Scabrous overexpression in the eye affects R3/R4 cell fate specification and inhibits notch signaling
2015
Background Planar cell polarity (PCP) in the Drosophila eye is generated when immature ommatidial preclusters acquire opposite chirality in the dorsal and ventral halves of the eye imaginal disc and rotate 90 ° toward the equator. The scabrous (sca) gene is involved in R8 differentiation and in the correct spacing of ommatidial clusters in eye imaginal discs, but it was also suggested to be required during ommatidial rotation. However, no clear relationships between sca and other genes involved in the process were established. Results To explore the role of Sca in PCP establishment, we performed an RNAi-based modifier genetic screen using the rough eye phenotype of sca-overexpressing flies.…
Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology.
2021
The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.
Metal homeostasis regulators suppress FRDA phenotypes in a drosophila model of the disease
2016
Friedreich's ataxia (FRDA), the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin def…