Search results for "Mesoscopic System"

showing 10 items of 587 documents

Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and ph…

2016

A perovskite–quantum dot exciplex has been detected, opening a broad range of possibilities for advanced optoelectronic devices.

LuminescencePhotoluminescenceMaterials scienceLightBand gapperovskitesColorquantum dots02 engineering and technologyElectroluminescence010402 general chemistry01 natural scienceslaw.inventionCondensed Matter::Materials ScienceComputer Science::Emerging TechnologieslawPhotovoltaicsexciplex state formationPhysics::Atomic and Molecular ClustersElectrochemistryNanotechnologyPerovskitesResearch ArticlesLight emitting devices (LEDs)Perovskite (structure)TitaniumMultidisciplinaryQuantum dotsbusiness.industryPhysicsApplied OpticsExciplex state formationSciAdv r-articlesOxidesCalcium CompoundsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology0104 chemical sciencesPhotovoltaicsphotovoltaicsQuantum dotOptoelectronicsCondensed Matter::Strongly Correlated ElectronsLight emissionlight emitting devices (LEDs)0210 nano-technologybusinessResearch ArticleLight-emitting diodeScience Advances
researchProduct

Investigating spintronics thin film systems with synchrotron radiation

2009

Abstract Spintronics is a research field involving a wide variety of different magnetic materials. Synchrotron radiation in the VUV and soft X-ray regime is ideally suited to investigate the relationships between magnetic properties and electronic structure of spintronics thin film stacks. Complex layered structures and nanomagnets are the main building blocks for current and future spintronics applications. In this contribution we describe the study of spintronics model systems with respect to the static and dynamic behavior with an emphasis on interfaces.

Magnetization dynamicsRadiationMaterials scienceCondensed matter physicsSpintronicsMagnetismPhotoemission microscopySynchrotron radiationElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectNanomagnetEngineering physicsCondensed Matter::Materials ScienceComputer Science::Emerging TechnologiesThin filmRadiation Physics and Chemistry
researchProduct

A magnetic skyrmion as a non-linear resistive element - a potential building block for reservoir computing

2017

Inspired by the human brain, there is a strong effort to find alternative models of information processing capable of imitating the high energy efficiency of neuromorphic information processing. One possible realization of cognitive computing are reservoir computing networks. These networks are built out of non-linear resistive elements which are recursively connected. We propose that a skyrmion network embedded in frustrated magnetic films may provide a suitable physical implementation for reservoir computing applications. The significant key ingredient of such a network is a two-terminal device with non-linear voltage characteristics originating from single-layer magnetoresistive effects,…

MagnetoresistanceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyMagnetic skyrmionTopology01 natural sciencesCondensed Matter - Strongly Correlated Electrons0103 physical sciences010306 general physicsBlock (data storage)PhysicsResistive touchscreenStrongly Correlated Electrons (cond-mat.str-el)SkyrmionReservoir computingDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterNeuromorphic engineering0210 nano-technologyRealization (systems)Other Condensed Matter (cond-mat.other)
researchProduct

Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides

2009

International audience; We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing subwavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-mu m-long DC comprising 3 mu m offset S bends and 25-mu m-long parallel waveguides that changes from the "through" state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-mu m-long DC should enable complete separation of the radiation channels at 1400 and 162…

Materials science02 engineering and technologyDielectric01 natural scienceslaw.invention010309 opticsOpticslaw[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]PlasmonTotal internal reflectionbusiness.industrySurface plasmon021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsWavelength[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicPower dividers and directional couplersOptoelectronicsNear-field scanning optical microscope[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicPhotolithography0210 nano-technologybusiness
researchProduct

Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers

2018

Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems possess an inter- or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single layers. In this paper, we report the electronic structure and the absorption spectra of ${\mathrm{MoS}}_{2}/{\mathrm{WS}}_{2}$ and ${\mathrm{MoSe}}_{2}/{\mathrm{WSe}}_{2}$ HBLs from first-principles calculations. We explore the spectral positions, binding energies, and the origins of inter- and intralayer excitons and compare our re…

Materials scienceAbsorption spectroscopyCondensed matter physicsExcitonBinding energy02 engineering and technologyElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesBand offsetCondensed Matter::Materials Science0103 physical sciencesCharge carrierAbsorption (logic)010306 general physics0210 nano-technologyEnergy (signal processing)Physical Review B
researchProduct

Electronic and optical properties of InN nanowires

2016

Abstract We have employed a multiband envelope function method to study wurtzite [0001] InN nanowires of cylindrical cross section. The electronic subband structure and optical absorption spectrum are calculated as a function of the nanowire radius. The energies of the Γ -point conduction band states show a monotonous increase with decreasing radius. On the other hand, the size dispersion of the valence band states is more involved, showing various crossing and anticrossing effects due to the interplay between the confinement and band mixing effects. Thus, for small ( R 2 nm ) nanowires the highest valence band state has dominant p z -symmetry, but for R > 2 nm the highest state has dominan…

Materials scienceAbsorption spectroscopyCondensed matter physicsMechanical EngineeringNanowire02 engineering and technologyRadiusCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpectral lineSymmetry (physics)Condensed Matter::Materials ScienceMechanics of Materials0103 physical sciencesDispersion (optics)General Materials Science010306 general physics0210 nano-technologyAbsorption (electromagnetic radiation)Wurtzite crystal structureMaterials Science in Semiconductor Processing
researchProduct

Absorption spectroscopy of single InAs self-assembled quantum dots

2004

Abstract Excitonic transitions of single InAs self-assembled quantum dots were directly measured at 4.2 K in an optical transmission experiment. We use the Stark effect in order to tune the exciton energy of a single quantum dot into resonance with a narrow-band laser. With this method, sharp resonances in the transmission spectra are observed. The oscillator strengths as well as the homogeneous line widths of the single-dot optical transitions are obtained. A clear saturation in the absorption is observed at modest laser powers.

Materials scienceAbsorption spectroscopyExcitonResonanceCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionsymbols.namesakeStark effectQuantum dot laserlawQuantum dotsymbolsQuantum-optical spectroscopyAtomic physicsPhysica E: Low-dimensional Systems and Nanostructures
researchProduct

Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells

2011

Exciton separation dynamics in the electron transfer system containing highly photostable CdSe/CdS core/shell nanocrystal quantum dots and adsorbed methylviologen was investigated by means of femtosecond absorption spectroscopy. The experiments revealed that electron extraction from the photoexcited core is possible, and the rate of the ET reaction strongly depends on the CdS shell thickness. A CdS associated exponential decay constant β of 0.33 A−1 was obtained reflecting the electronic barrier effect of the shell. These findings show that core/shell structures are well suited for the design of optimized QD-based solar cells.

Materials scienceAbsorption spectroscopyExcitonShell (structure)ElectronQuantum dot solar cellCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceElectron transferGeneral EnergyNanocrystalChemical physicsQuantum dotPhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryAtomic physicsThe Journal of Physical Chemistry C
researchProduct

Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

2018

Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …

Materials scienceAcoustics and Ultrasonics530 Physicsterahertz emission spectroscopyFOS: Physical sciences02 engineering and technology01 natural sciencesTransition metalHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultrafast spincaloritronics010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSterahertz emission spectroscopy; terahertz transmission spectroscopy; ultrafast spintronics; ultrafast spincaloritronicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryRelaxation (NMR)Refractory metalsMaterials Science (cond-mat.mtrl-sci)621021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTerahertz spectroscopy and technologyterahertz transmission spectroscopyultrafast spintronicsSpin Hall effect[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusiness
researchProduct

Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study

2019

The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from [Formula: see text]-K indirect in isolated monolayer to [Formula: see text]-[Formula: see text] direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, w…

Materials scienceBand gapPhysics::Optics02 engineering and technology01 natural scienceslaw.inventionGallium arsenidechemistry.chemical_compoundsymbols.namesakeCondensed Matter::Materials ScienceStrain engineeringlaw0103 physical sciencesMonolayerPhysics::Atomic and Molecular ClustersGeneral Materials Science010306 general physicsCondensed matter physicsGrapheneCondensed Matter::OtherBilayerPhysicsFermi level021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectchemistrysymbolsDirect and indirect band gaps0210 nano-technologyJournal of physics : condensed matter
researchProduct