Search results for "Mesoscopic System"
showing 10 items of 587 documents
Microrefrigeration by NIS tunnel junctions
1996
By using a normal metal-insulator-superconductor (NIS) tunnel junction one can manipulate the Fermi-Dirac distribution of the electrons in the normal electrode. If the junction is biased close to the superconducting gap, Δ, only “hot electrons” above Fermi level can tunnel from the normal electrode to the superconductor. Thus, due to the decoupling of the conduction electrons from the lattice at low temperatures, there exists a possibility to decrease the electronic temperature by this method. Because of the symmetry with bias voltage, two NIS tunnel junctions in series can form an efficient microrefrigerator. Temperature can be measured with two additional junctions by considering the vari…
Microrefrigeration by normal-metal/ insulator/superconductor tunnel junctions
1997
Abstract A normal-metal/insulator/superconductor (NIS) tunnel junction can be applied to cool electrons by biasing the junction suitably with external voltage. Because of the symmetry with bias voltage, two NIS junctions in series can form an efficient microrefrigerator. So far our SINIS microrefrigerator has been capable of reaching electronic temperatures of about 100 mK starting from 300 mK. To achieve appreciable refrigeration of the underlying lattice, microrefrigerator must be thermally decoupled from the bulk substrate. We have demonstrated experimentally the reduction of lattice temperature of a few mK at 200 mK by extending the normal electrode on a thin dielectric membrane. Method…
Application of superconductor-semiconductor Schottky barrier for electron cooling
2003
Abstract Electronic cooling in superconductor–semiconductor–superconductor structures at sub kelvin temperatures has been demonstrated. Effect of the carrier concentration in the semiconductor on performance of the micro-cooler has been investigated.
Vortex motion in Nb/PdNi/Nb trilayers: new aspects in the flux flow state
2011
We study the dynamics of vortex lines in Supercondutor/Ferromagnet/Superconductor (SFS) heterostructures at microwave frequencies. We have employed swept-frequency, Corbino-disk and resonant, dielectric-resonator techniques to obtain the field and temperature dependence of the vortex-state parameters. We concentrate here on the genuine flux-flow resistivity $\rho_{ff}$, that we access at subcritical currents using a sufficiently high driving frequency. We find that $\rho_{ff}$ does not follow the well-known Bardeen-Stephen model. Instead, it is well described by a full time-dependent Ginzburg-Landau expression at very thin F layer thickness, but changes to a previously unreported field-depe…
Trapping of quasiparticles of a nonequilibrium superconductor
2000
We have performed experiments where hot electrons are extracted from a normal metal into a superconductor through a tunnel junction. We have measured the cooling performance of such NIS junctions, especially in the cases where another normal metal electrode, a quasiparticle trap, is attached to the superconductor at different distances from the junction in direct metal-to-metal contact or through an oxide barrier. The direct contact at a submicron distance allows superior thermalization of the superconductor. We have analyzed theoretically the heat transport in this system. From both experiment and theory, it appears that NIS junctions can be used as refrigerators at low temperatures only w…
Efficient electronic cooling in heavily doped silicon by quasiparticle tunneling
2001
Cooling of electrons in a heavily doped silicon by quasiparticle tunneling using a superconductor–semiconductor–superconductor double-Schottky-junction structure is demonstrated at low temperatures. In this work, we use Al as the superconductor and thin silicon-on-insulator (SOI) film as the semiconductor. The electron–phonon coupling is measured for the SOI film and the low value of the coupling is shown to be the origin of the observed significant cooling effect.
NIS chip refrigeration
1999
A normal-metal/insulator/superconductor (NIS) tunnel junction can be applied to cool electrons by biasing the junction suitably with external voltage. Two NIS junctions in series can form an efficient microrefrigerator because of the symmetry with bias voltage. Our SINIS microrefrigerator has been capable of reaching electronic temperatures of about 100 mK starting from 300 mK. To achieve appreciable refrigeration of the underlying lattice, the microrefrigerator must be thermally decoupled from the bulk substrate. We have demonstrated experimentally the reduction of lattice temperature by 23 mK at 180 mK by extending the normal electrode on a thin dielectric membrane with four suspended bri…
Complete stabilization and improvement of the characteristics of tunnel junctions by thermal annealing
2006
We have observed that submicron sized Al--AlO{$_x$}--Al tunnel junctions can be stabilized completely by annealing them in vacuum at temperatures between $350^{\circ}$C and $450^{\circ}$C. In addition, low temperature characterization of the samples after the annealing treatment showed a marked improvement of the tunneling characteristics due to disappearance of unwanted resonances in the current. Charging energy, tunneling resistance, barrier thickness and height all increase after the treatment. The superconducting gap is not affected, but supercurrent is reduced in accordance with the increase of tunneling resistance.
Proximity-induced Josephson-quasiparticle process in a single-electron transistor
1998
We have performed the first experiments in a superconductor - normal metal - superconductor single electron transistor in which there is an extra superconducting strip partially overlapping the normal metal island in good metal-to-metal contact. Superconducting proximity effect gives rise to current peaks at voltages below the quasiparticle threshold. We interpret these peaks in terms of the Josephson-quasiparticle process and discuss their connection with the proximity induced energy gap in the normal metal island.
Interference of nonequilibrium quasiparticles in a superconductor
2003
Abstract We have observed an interference of nonequilibrium quasiparticles, injected from a copper electrode into an aluminium loop through a tunnel barrier. At temperatures below 1K the tunnel current at fixed voltage bias is periodically modulated by external magnetic field. The amplitude of the modulation reaches maximum at a bias slightly below the gap energy, and decreases with the further increase of the bias voltage. For a given voltage bias the amplitude of the current oscillations decreases with increase of the temperature and the loop circumference.