Search results for "Metabolic Networks and Pathway"
showing 10 items of 88 documents
Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroac…
2012
Abstract Background Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria. Resul…
Digitalis purpurea P5 beta R2, encoding steroid 5 beta-reductase, is a novel defense-related gene involved in cardenolide biosynthesis.
2009
The stereospecific 5 beta-reduction of progesterone is a required step for cardiac glycoside biosynthesis in foxglove plants. Recently, we have isolated the gene P5 beta R, and here we investigate the function and regulation of P5 beta R2, a new progesterone 5 beta-reductase gene from Digitalis purpurea. P5 beta R2 cDNA was isolated from a D. purpurea cDNA library and further characterized at the biochemical, structural and physiological levels. Like P5 beta R, P5 beta R2 catalyzes the 5 beta-reduction of the Delta(4) double bond of several steroids and is present in all plant organs. Under stress conditions or on treatment with chemical elicitors, P5 beta R expression does not vary, wherea…
Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach.
2015
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-s…
Genetic architecture of circulating lipid levels
2011
Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independen…
Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome
2013
Many insect species have established long-term symbiotic relationships with intracellular bacteria. Symbiosis with bacteria has provided insects with novel ecological capabilities, which have allowed them colonize previously unexplored niches. Despite its importance to the understanding of the emergence of biological complexity, the evolution of symbiotic relationships remains hitherto a mystery in evolutionary biology. In this study, we contribute to the investigation of the evolutionary leaps enabled by mutualistic symbioses by sequencing the genome of Blattabacterium cuenoti, primary endosymbiont of the omnivorous cockroach Blatta orientalis, and one of the most ancient symbiotic associa…
Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern.
2014
Background Novosphingobium sp. strain PP1Y is a marine α-proteobacterium adapted to grow at the water/fuel oil interface. It exploits the aromatic fraction of fuel oils as a carbon and energy source. PP1Y is able to grow on a wide range of mono-, poly- and heterocyclic aromatic hydrocarbons. Here, we report the complete functional annotation of the whole Novosphingobium genome. Results PP1Y genome analysis and its comparison with other Sphingomonadal genomes has yielded novel insights into the molecular basis of PP1Y’s phenotypic traits, such as its peculiar ability to encapsulate and degrade the aromatic fraction of fuel oils. In particular, we have identified and dissected several highly …
The human peroxisome in health and disease: The story of an oddity becoming a vital organelle
2013
Abstract Since the first report by Rhodin in 1954, our knowledge on mammalian microbodies/peroxisomes has known several periods. An initial two decades period (1954–1973) has contributed to the biochemical individualisation of peroxisomes as a new class of subcellular organelles (de Duve, 1965). The corresponding research period failed to define a clear role of mammalian peroxisomes in vital functions and intermediary metabolism, explaining why feeling that peroxisomes might be in the human cell oddities has prevailed during several decades. The period standing from 1973 to nowadays has progressively removed this cell oddity view of peroxisomes by highlighting vital function and metabolic r…
Pho85 and PI(4,5)P(2) regulate different lipid metabolic pathways in response to cold
2019
Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade trans…
A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete.
2015
We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the G…
Sialotranscriptomics of the argasid tick ornithodoros moubata along the trophogonic cycle
2021
32 páginas, 8 tablas, 6 figuras