Search results for "Metal–organic framework"
showing 10 items of 20 documents
Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Metal Organic Framework: Experimental and Periodic DFT Studies
2014
The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin-crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)(4)]} (1) with five-membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin-crossover transition with hysteresis loops 14-29 K wide and average critical temperatures T-c=201 K (1.fur), 167 K (1.pyr), and 114.6 K (1.thio) well below that of the parent compound 1 (T-c=295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1.fur, while 1.pyr and 1.thio show 50% spin transition. For 1.fur the transformation between the HS and IS (mi…
Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes
2020
This review summarizes the recent advances concerning metal–organic frameworks (MOFs) modified with several biomolecules (e.g., amino acids, nucleobases, proteins, antibodies, aptamers, etc.) as ligands to prepare affinity-based sorbents for application in the sample preparation field. The preparation and incorporation strategies of these MOF-based affinity materials were described. Additionally, the different types of ligands that can be employed for the synthesis of these biocomposites and their application as sorbents for the selective extraction of molecules and clean-up of complex real samples is reported. The most important features of the developed biocomposites will be discussed thr…
Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni).
2012
The synthesis and characterization of a series of three-dimensional (3D) Hofmann-like clathrate porous metal-organic framework (MOF) materials [Fe(bpac)M(CN) 4] (M=Pt, Pd, and Ni; bpac=bis(4-pyridyl)acetylene) that exhibit spin-crossover behavior is reported. The rigid bpac ligand is longer than the previously used azopyridine and pyrazine and has been selected with the aim to improve both the spin-crossover properties and the porosity of the corresponding porous coordination polymers (PCPs). The 3D network is composed of successive {Fe[M(CN) 4]} n planar layers bridged by the bis-monodentate bpac ligand linked in the apical positions of the iron center. The large void between the layers, w…
Tunable Spin-Crossover Behavior of the Hofmann-like Network {Fe(bpac)[Pt(CN) 4 ]} through Host-Guest Chemistry
2013
A study of the spin-crossover (SCO) behavior of the tridimensional porous coordination polymer {Fe(bpac)[Pt(CN)4]} (bpac=bis(4-pyridyl) acetylene) on adsorption of different mono- and polyhalobenzene guest molecules is presented. The resolution of the crystal structure of {Fe(bpac)[Pt(CN) 4]}A?G (G=1,2,4-trichlorobenzene) shows preferential guest sites establishing I?A?A?A?I? stacking interactions with the host framework. These host-guest interactions may explain the relationship between the modification of the SCO behavior and both the chemical nature of the guest molecule (electronic factors) and the number of adsorbed molecules (steric factors). Copyright © 2013 WILEY-VCH Verlag GmbH & …
Crystal structure of a low-spin poly[di-μ3-cyanido-di-μ2-cyanido-bis(μ2-2-ethylpyrazine)dicopper(I)iron(II)]
2019
In the title metal–organic framework, [Fe(C6H8N2)2{Cu(CN)2}2] n , the low-spin FeII ion lies at an inversion centre and displays an elongated octahedral [FeN6] coordination environment. The axial positions are occupied by two symmetry-related bridging 2-ethylpyrazine ligands, while the equatorial positions are occupied by four N atoms of two pairs of symmetry-related cyanide groups. The CuI centre is coordinated by three cyanide carbon atoms and one N atom of a bridging 2-ethylpyrazine molecule, which form a tetrahedral coordination environment. Two neighbouring Cu atoms have a short Cu...Cu contact [2.4662 (7) Å] and their coordination tetrahedra are connected through a common edge between…
Crystal structure of catena-poly[[[(2-ethoxypyrazine-κN)copper(I)]-di-μ2-cyanido] [copper(I)-μ2-cyanido]]
2019
The title compound, {[Cu(EtOpz)(CN)2][CuCN]}n, where EtOpz is 2-ethoxypyrazine, is a two-dimensional polymeric copper complex with different coordination environments of the two CuI ions. One Cu atom is coordinated to the 2-ethoxypyrazine molecule and two bridging cyanide ligands, equally disordered over two sites. The second Cu atom is coordinated by two disordered over two sites bridging cyanide groups. Two copper–cyanide chains are connected through Cu⋯Cu contact.
From 1D coordination polymers to Metal Organic Frameworks by the use of 2-pyridyl oximes.
2020
The synthesis and characterization of coordination polymers and metal&ndash
Alkali-Metal Azides Interacting with Metal–Organic Frameworks
2013
Sponge‐Like Behaviour in Isoreticular Cu(Gly‐His‐X) Peptide‐Based Porous Materials
2015
We report two isoreticular 3D peptide-based porous frameworks formed by coordination of the tripeptides Gly-L-His-Gly and Gly-L-His-L-Lys to Cu(II) which display sponge-like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2 O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbo…
Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs).
2020
Microrobots and metal–organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF‐based small‐scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro‐ and nanoswimmers including small‐scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selec…