Search results for "Metamaterial"

showing 10 items of 89 documents

Cubic metamaterial crystal supporting broadband isotropic chiral phonons

2021

Chiral metamaterials can support chiral phonons leading to acoustical activity, the acoustical counterpart of optical activity. However, the properties of early metamaterial designs have been very highly anisotropic, and chiral acoustical phonons occurred only for selected high-symmetry directions. The authors propose a novel chiral metamaterial based on ``twisting'' a truncated octahedron in a simple-cubic unit cell. Not supported by crystal symmetry alone but rather by a tuned degeneracy, chiral phonons and large broadband acoustical activity are obtained for all phonon propagation directions in 3D. This result is notable because even isotropic achiral acoustical phonons are rare for crys…

Materials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsPhononHigh Energy Physics::LatticeIsotropyPhysics::OpticsMetamaterial02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesCrystalCondensed Matter::Materials ScienceTruncated octahedronCondensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physics0210 nano-technologyAnisotropyDegeneracy (mathematics)Physical Review Materials
researchProduct

Graphene Cardboard: from Ripples to Tunable Metamaterial

2014

Recently graphene was introduced with tunable ripple texturing, a nanofabric enabled by graphene's remarkable elastic properties. However, one can further envision sandwiching the ripples, thus constructing composite nanomaterial, graphene cardboard. Here the basic mechanical properties of such structures are investigated computationally. It turns out that graphene cardboard is highly tunable material, for its elastic figures of merit vary orders of magnitude, with Poisson ratio tunable from 10 to -0.5 as one example. These trends set a foundation to guide the design and usage of metamaterials made of rippled van der Waals solids.

Materials sciencePhysics and Astronomy (miscellaneous)Orders of magnitude (temperature)FOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionNanomaterialssymbols.namesakelawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesFigure of merit010306 general physicsCondensed Matter - Materials ScienceNanocompositeta114Condensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGrapheneMaterials Science (cond-mat.mtrl-sci)Metamaterial021001 nanoscience & nanotechnologyPoisson's ratiosymbolsOptoelectronicsvan der Waals force0210 nano-technologybusiness
researchProduct

Some considerations on the transmissivity of trirefringent metamaterials

2016

Nonlocal effects in metal–dielectric (MD) periodic nanostructures may typically be observed when the plasmonic particles and gaps are on the scale of a few tens of nanometers, enabling under certain conditions (succinctly for epsilon near zero) a collimated beam to split into three refracted signals. We developed a method for precisely evaluating the categorized transmissivity in an air/trirefringent metamaterial interface, which uses a fast one-dimensional Fourier transform and finite element solvers of Maxwell’s equations. In periodic arrays of MD nanofilms, it is proved a tunable transmissivity switch of the multirefracted beams under varying angle of incidence and wavelength, while keep…

Materials sciencePhysics::OpticsEffective medium theory02 engineering and technologyNumerical approximation and analysis01 natural sciencesCollimated light010309 opticsSplit-ring resonatorsymbols.namesakeOptics0103 physical sciencesPlasmonNanomaterialsÓpticabusiness.industryMetamaterialStatistical and Nonlinear Physics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFinite element methodWavelengthFourier transformAngle of incidence (optics)symbols0210 nano-technologybusiness
researchProduct

Stiffer, Stronger and Centrosymmetrical Class of Pentamodal Mechanical Metamaterials

2019

Pentamode metamaterials have been used as a crucial element to achieve elastical unfeelability cloaking devices. They are seen as potentially fragile and not simple for integration in anisotropic structures due to a non-centrosymmetric crystalline structure. Here, we introduce a new class of pentamode metamaterial with centrosymmetry, which shows better performances regarding stiffness, toughness, stability and size dependence. The phonon band structure is calculated based on the finite element method, and the pentamodal properties are evaluated by analyzing the single band gap and the ratio of bulk and shear modulus. The Poisson&rsquo

Materials sciencePhysics::OpticsModulus02 engineering and technologyCloaking device01 natural scienceslcsh:TechnologyArticle[SPI.MAT]Engineering Sciences [physics]/MaterialsShear modulus0103 physical sciencesmedicineGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicslcsh:Microscopylcsh:QC120-168.85[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Condensed matter physicslcsh:QH201-278.5lcsh:TpentamodeIsotropyMetamaterialStiffness021001 nanoscience & nanotechnologyphonon band structureFinite element methodmechanical metamateriallcsh:TA1-2040Mechanical metamateriallcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringmedicine.symptom0210 nano-technologylcsh:Engineering (General). Civil engineering (General)centrosymmetricallcsh:TK1-9971
researchProduct

Plano-concave microlenses with epsilon-near-zero surface-relief coatings for efficient shaping of nonparaxial optical beams

2017

Abstract Epsilon-near-zero (ENZ) materials, including artificial metamaterials, have been advanced to mold laser beams and antenna-mediated radiated waves. Here we propose an efficient method to control Ohmic losses inherent to natural ENZ materials by the assembly of subwavelength structures in a nonperiodic matrix constituting an ENZ metacoating. Implemented over plano-concave transparent substrates whose radius can be of only a few wavelengths, ENZ surface-relief elements demonstrate to adequately shape a plane wave into highly localized fields. Furthermore, our proposal provides an energy efficiency even higher than an ideally-lossless all-ENZ plano-concave lens. Our procedure is satisf…

Materials sciencePlane waveFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsMatrix (mathematics)Opticslaw0103 physical sciencesElectrical and Electronic EngineeringOhmic contactbusiness.industryZero (complex analysis)MetamaterialRadius021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsLens (optics)WavelengthOptoelectronics0210 nano-technologybusinessPhysics - OpticsOptics (physics.optics)Optics & Laser Technology
researchProduct

Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice

2012

We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses. This research was funded by the Qatar National Research Fund under the project NPRP 09-462-1-074, by the Spanish Ministry of Economy and Competitiveness under the project TEC2009-11635, and by the Serbia…

Materials scienceSuperlatticesWave propagationSuperlatticeNanophotonicsPhysics::OpticsSurface plasmons02 engineering and technologyDielectric01 natural sciences010309 opticsOptics0103 physical sciencesÓpticaCondensed matter physicsbusiness.industrySurface plasmonMetamaterial021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)Electronic Optical and Magnetic MaterialsSurfacesSurface waveMetamaterialsNanophotonics0210 nano-technologybusinessJournal of Nanophotonics
researchProduct

Metamaterial coatings for subwavelength-resolution imaging

2011

Coating lenses are membranes made of materials exhibiting negative index of refraction and deposited on other media with high dielectric constant e 3 . Unfortunately far-field imaging suffers from centrosymmetric aberrations. We propose a simple procedure to compensate partially deviations from ray-tracing perfect imaging in asymmetric metamaterial lenses. We also show that, under some circumstances, coating superlens may recover subwavelength information transmitted in a relative spatial spectrum ranging from 1 to √e 3 .

Materials scienceSuperlensbusiness.industryPhysics::OpticsMetamaterialengineering.materialRay tracing (physics)Spherical aberrationOpticsOptical coatingCoatingengineeringbusinessRefractive indexHigh-κ dielectricSPIE Proceedings
researchProduct

Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles

2020

International audience; The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled…

Materials scienceTerahertz radiationNanophotonicsFOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics02 engineering and technology010402 general chemistrySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesOptical switchhalide perovskites nanoparticles[SPI]Engineering Sciences [physics]Fano resonance; halide perovskites nanoparticles; ultrafast photophysics; nanophotonics; Mie resonancesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceThin filmPhysics::Chemical PhysicsPerovskite (structure)[PHYS]Physics [physics]Condensed Matter - Materials Sciencebusiness.industryMie resonancesGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Fano resonanceMetamaterialSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnology0104 chemical sciencesOptoelectronicsFano resonancenanophotonics0210 nano-technologybusinessultrafast photophysicsUltrashort pulseOptics (physics.optics)Physics - Optics
researchProduct

Transmission anisotropy in triple-film opal photonic crystals

2006

Summary form only given: For photonic crystals (PhCs) to have successful impact on advancement of optical circuits and realisation of various functionalities, the incorporation of artificial defects into 3D PhCs is necessary. Opal films represent a convenient approach to the realisation of 3D PhCs. Taking into account the limited flexibility of the self-assembly, the first steps can be studies of planar defects in opals and hetero-opals. Characterisation of heteroPhCs should include the investigation of the dispersion of photonic bandgaps (PBG). While the dispersion of low-order PBGs in opal films is well known, the high order PBGs were hardly studied so far owing to high requirements to th…

Materials sciencebusiness.industryBand gapPolarization (waves)Photonic metamaterialBrillouin zoneCondensed Matter::Materials ScienceOpticsDispersion (optics)OptoelectronicsHigh Energy Physics::ExperimentPhotonicsbusinessAnisotropyPhotonic crystal
researchProduct

Toward Metal Halide Perovskite Nonlinear Photonics.

2018

The possibility of controlling light using the nonlinear optical properties of photonic devices opens new points of view in information and communications technology applications. In this Perspective, we review and analyze the potential role of metal halide perovskites in a framework different from their usual one in photovoltaic and light-emitting devices, namely, the one where they can play as nonlinear photonic materials. We contextualize this new role by comparing the few extant results on their nonlinear optical properties to those of other known nonlinear materials. As a result of this analysis, we provide a vision of future developments in photonics that can be expected from this new…

Materials sciencebusiness.industryPhotovoltaic systemPhysics::OpticsHalide02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesEngineering physicsPhotonic metamaterial010309 opticsNonlinear systemNonlinear opticalExtant taxon0103 physical sciencesGeneral Materials SciencePhysical and Theoretical ChemistryPhotonics0210 nano-technologybusinessPerovskite (structure)The journal of physical chemistry letters
researchProduct