Search results for "Metamaterial"
showing 10 items of 89 documents
Three-dimensional point spread function and generalized amplitude transfer function of near-field flat lenses.
2010
We derive a nonsingular, polarization-dependent, 3D impulse response that provides unambiguously the wave field scattered by a negative-refractive-index layered lens and distributed in its image volume. By means of a 3D Fourier transform, we introduce the generalized amplitude transfer function in order to gain a deep insight into the resolution power of the optical element. In the near-field regime, fine details containing some depth information may be transmitted through the lens. We show that metamaterials with moderate absorption are appropriate for subwavelength resolution keeping a limited degree of depth discrimination.
Left-handed metamaterial coatings for subwavelength-resolution imaging
2012
We report on a procedure to improve the resolution of far-field imaging by using a neighboring high-index medium that is coated with a left-handed metamaterial. The resulting plot can also exhibit an enhanced transmission by considering proper conditions to retract backscattering. Based on negative refraction, geometrical aberrations are considered in detail since they may cause a great impact in this sort of diffraction-unlimited imaging by reducing its resolution power. We employ a standard aberration analysis to refine the asymmetric configuration of metamaterial superlenses. We demonstrate that low-order centrosymmetric aberrations can be fully corrected for a given object plane. For su…
Progress and Challenges in the Calculation of Electronic Excited States
2011
A detailed understanding of the properties of electronic excited states and the reaction mechanisms that molecules undergo after light irradiation is a fundamental ingredient for following light-driven natural processes and for designing novel photonic materials. The aim of this review is to present an overview of the ab initio quantum chemical and time-dependent density functional theory methods that can be used to model spectroscopy and photochemistry in molecular systems. The applicability and limitations of the different methods as well as the main frontiers are discussed. To illustrate the progress achieved by excited-state chemistry in the recent years as well as the main challenges f…
Study of periodic Dielectric Frequency-Selective Surfaces under 3D plane wave incidence
2016
A periodic Dielectric Frequency-Selective Surface (DFSS) is studied under 3D plane-wave incidence, whose unit cell in the periodic direction is composed of a dielectric grating and a homogeneous dielectric layer. The structure is excited by a linearly polarized plane-wave. The procedure for computing the Brillouin diagram of the structure under 2D plane-wave incidence with TE or TM polarization was already described by the authors, and the extension to the 3D incidence case has been performed in a similar way. Following the same formalism, it has been obtained the Generalized Scattering Matrix (GSM) of one period of the infinite periodic lattice. This requires the knowledge of the modal spe…
Plasmonic nanostructures through DNA-assisted lithography
2018
DALI combines DNA origami with conventional top-down fabrication for creating designer high-resolution plasmonic nanostructures.
Resonant Beam Steering and Carpet Cloaking Using an Acoustic Transformational Metascreen
2018
International audience; We invoke the Huygens principle to derive dispersion characteristics of acoustic transformational meta-surfaces that can deflect parallel wavefronts in a desired direction. We also propose a dual-Lorentz resonator whose aperture fields can be tuned by geometrical changes to implement a particular phase with unity reflection coefficient. The proposed metascreen is designed by our arranging slightly detuned Lorentz cavities that generate the necessary interference to compensate for the incident wavefronts. Since a complete 0-2 pi range of the reflection phase is achieved, the metascreen can steer a beam across the full horizon. Moreover, since the proposed dual resonat…
Towards an efficient epsilon near-zero-based wavefront shaper
2017
Although epsilon-near-zero (ENZ) metamaterials offer many unconventional ways to play with light, the optical impedance mismatch with surroundings can limit the efficiency of future devices. An original example of ENZ-based applications is the wavefront shaping, but up to now devices have transmission efficiency as low as 10-5 [1]. Here, we report strategies to enhance the transmittance through ENZ layer and we demonstrate an enhancement by four orders of magnitude of the transmittance, which reaches up to 15% in the context of ENZ-based wavefront shaping [2].
Improving the transmittance of an epsilon-near-zero-based wavefront shaper
2016
Although Epsilon-Near-Zero metamaterials (ENZ) offer many unconventional ways to play with light, the optical impedance mismatch with surroundings can limit the efficiency of future devices. We report here on the improvement of the transmittance of an Epsilon-Near-Zero (ENZ) wavefront shaper. We first address in this paper the way to enhance the transmittance of a plane wave through a layer of ENZ material thanks to a numerical optimization approach based on the Transfer Matrix Method. We then transpose the one dimensional approach to a two dimensional case where the emission of a dipole is shaped into a plane wave by an ENZ device with a design that optimizes the transmittance. As a result…
2017
The volume of ordinary materials decreases in response to a pressure increase exerted by a surrounding gas or liquid, i.e., the material volume compressibility is positive. Recently, poroelastic metamaterial architectures have been suggested theoretically that allow for an unusual negative effective static volume compressibility—which appears to be forbidden for reasons of energy conservation at first sight. The challenge in the three-dimensional (3D) fabrication of these blueprints lies in the necessary many hollow 3D crosses sealed by thin membranes, which we realize in this work by using 3D laser microlithography combined with a serendipitous mechanism. By using optical-microscopy cross-…
Extensive tailorability of sound absorption using acoustic metamaterials
2017
We present an experimental demonstration of sound absorption tailorability, using acoustic metamaterials made of resonant cavities that does not rely on any dissipative material. As confirmed by numerical calculation, we particularly show that using quarter-wave-like resonators made of deep subwavelength slits allows a high confinement of the acoustic energy of an incident wave. This leads to enhance the dissipation in the cavities and, consequently, generates strong sound absorption, even over a wide frequency band. We finally demonstrate experimentally the key role of the filling ratio in tailoring such an absorption, using a metamaterial constituted of space-coiled cavities embedded in a…