6533b826fe1ef96bd128480a

RESEARCH PRODUCT

Extensive tailorability of sound absorption using acoustic metamaterials

Mahmoud AddoucheAbdelkrim KhelifA. Elayouch

subject

[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Materials scienceFrequency bandAcousticsFOS: Physical sciencesGeneral Physics and AstronomyAcoustic energyPhysics::OpticsApplied Physics (physics.app-ph)Physics - Applied Physics02 engineering and technologyDissipation021001 nanoscience & nanotechnology01 natural sciences3. Good health[SPI.MAT]Engineering Sciences [physics]/MaterialsLow volumeResonatorIncident wave0103 physical sciencesBroadbandAcoustic metamaterials[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technology

description

We present an experimental demonstration of sound absorption tailorability, using acoustic metamaterials made of resonant cavities that does not rely on any dissipative material. As confirmed by numerical calculation, we particularly show that using quarter-wave-like resonators made of deep subwavelength slits allows a high confinement of the acoustic energy of an incident wave. This leads to enhance the dissipation in the cavities and, consequently, generates strong sound absorption, even over a wide frequency band. We finally demonstrate experimentally the key role of the filling ratio in tailoring such an absorption, using a metamaterial constituted of space-coiled cavities embedded in a polystyrene matrix. This paves the way for tremendous opportunities in soundproofing because of its low density, low volume, broadband and tailorable capabilities.

10.1063/1.5035129https://hal.archives-ouvertes.fr/hal-03222013