Search results for "Method"

showing 10 items of 13253 documents

Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory

2020

We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsAstrophysicsanisotropy [cosmic radiation]Amplitude01 natural sciencessurface [detector]010303 astronomy & astrophysicsRight ascensionastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSGalactic CenterAstrophysics::Instrumentation and Methods for AstrophysicsCosmic RaysAugerobservatoryAmplitudePhysics::Space PhysicsAstrophysics - High Energy Astrophysical PhenomenaExtragalactic cosmic rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raycosmic radiation: anisotropyExtragalactic cosmic rayGalactic center0103 physical sciencesHigh Energy PhysicsPierre auger observatory0105 earth and related environmental sciencesPierre Auger Observatorydetector: surfaceFísicaAstronomy and AstrophysicsCosmic rayefficiency [trigger]GalaxyDipole* Automatic Keywords *Space and Planetary ScienceExperimental High Energy Physicstrigger: efficiencyddc:520galaxyDipoleObservatoryEnergy (signal processing)anisotropiesRight ascension[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)dipoleThe Astrophysical Journal
researchProduct

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory

2020

Results of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, Fermi-LAT, MAGIC, and other detectors of electromagnetic radiation in several bands. The Pierre Auger Observatory is sensitive to neutrinos in the energy range from 100 PeV to 100 EeV and in the zenith-angle range from θ = 60° to θ = 95°, where the zenith angle is measured from the vertical direction. No neutrinos from the direction of TXS 0506+056 have been found. The results were analyzed in three periods: One of 6 m…

010504 meteorology & atmospheric sciencesAstronomyAstrophysicspower spectrum7. Clean energy01 natural sciencesIceCubeObservatoryMAGIC (telescope)UHE Cosmic Rays010303 astronomy & astrophysicsHigh energy astrophysics Neutrino astrony Blazars Transient sources Active galaxiesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEOBSERVATÓRIOSAstrophysics::Instrumentation and Methods for Astrophysicsneutrino: UHEUHE [neutrino]AugerobservatoryHigh energy astrophysics; Neutrino astronomy; Blazars; Transient sources; Active galaxiesNeutrino detectorNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsradiation: electromagneticHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGLASTblazar0103 physical sciencesNeutrinoHigh Energy PhysicsZenithAstrophysique0105 earth and related environmental sciencesPierre Auger ObservatoryFísicaAstronomy and AstrophysicsAstronomiesensitivityMAGICTransient sourcesSciences de l'espaceelectromagnetic [radiation]13. Climate actionSpace and Planetary Sciencegamma rayExperimental High Energy PhysicsActive galaxiesddc:520spectralNeutrino astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Blazars
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

2012

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEphemeris01 natural sciencesOccultationSettore FIS/05 - Astronomia E AstrofisicaPulsarObservatory0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAccretion (astrophysics)general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binaries [Moon pulsars]Moon pulsars: general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binariesSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenabusiness
researchProduct

Optimized Class-Separability in Hyperspectral Images

2016

International audience; Image visualization techniques are mostly based on three bands as RGB color composite channels for human eye to characterize the scene. This, however, is not effective in case of hyper-spectral images (HSI) because they contain dozens of informative spectral bands. To eliminate redundancy of spectral information among these bands, dimensionality reduction (DR) is applied while at the same trying to retain maximum information. In this paper, we propose a new method of information-preserved hyper-spectral satellite image visualization that is based on fusion of unsupervised band selection techniques and color matching function (CMF) stretching. The results show consist…

010504 meteorology & atmospheric sciencesBand SelectionComputer science0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesTransformation[SPI]Engineering Sciences [physics][ SPI.NRJ ] Engineering Sciences [physics]/Electric powerDisplay[ SPI ] Engineering Sciences [physics]Computer visionclass separabilityFusion021101 geological & geomatics engineering0105 earth and related environmental sciencesColor imagebusiness.industry[SPI.NRJ]Engineering Sciences [physics]/Electric powerHyperspectral imagingPattern recognition[ SDU.STU ] Sciences of the Universe [physics]/Earth SciencesImage segmentationSpectral bandsDimensionality reductionVisualization[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsImaging spectroscopyFull spectral imagingRGB color modelArtificial intelligencehyper-spectral image visualizationbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Analytical Process

2016

010504 meteorology & atmospheric sciencesChemistrybusiness.industryScientific methodEnvironmental chemistry010401 analytical chemistrySampling (statistics)Process engineeringbusiness01 natural sciences0104 chemical sciences0105 earth and related environmental sciences
researchProduct

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

2019

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

010504 meteorology & atmospheric sciencesComputer scienceEconomicsGround spectrometersScience0211 other engineering and technologiesContext (language use)02 engineering and technologyGround spectrometer01 natural sciencesSpectral lineRetrieval methodApproximation errorSun-induced chlorophyll fluorescenceSensitivity (control systems)910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRetrieval methodsSpectrometerSun-induced chlorophyll fluorescence; Ground spectrometers; Retrieval methods1900 General Earth and Planetary SciencesQHyperspectral imagingsun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods3. Good health10122 Institute of GeographyFISICA APLICADALine (geometry)General Earth and Planetary Sciencesddc:620Interpolation
researchProduct

Controlled time integration for the numerical simulation of meteor radar reflections

2016

We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …

010504 meteorology & atmospheric sciencesComputer scienceMETEORPLASMATIC OBJECTSRADAR REFLECTIONS01 natural sciencesplasmatic objectslaw.inventionINTEGRAL EQUATIONSlawRadar010303 astronomy & astrophysicsSpectroscopyEARTH ATMOSPHEREvolume integral equationRadiationPLASMANUMERICAL MODELSMathematical analysisFinite differenceNUMERICAL METHODMETEORSAtomic and Molecular Physics and OpticsCALCULATIONSControllabilityDISCRETE EXTERIOR CALCULUSAstrophysics::Earth and Planetary AstrophysicsMAGNETOPLASMADiscretizationRADAR REFLECTIONTIME DOMAIN ANALYSISVOLUME INTEGRAL EQUATIONdiscrete exterior calculusELECTROMAGNETIC SCATTERINGOpticsFINITE DIFFERENCE TIME DOMAIN METHOD0103 physical sciencesSCATTERINGTime domainmeteorsNUMERICAL METHODS0105 earth and related environmental sciencesta113ta114Computer simulationbusiness.industryta111Finite-difference time-domain methodRADARDiscrete exterior calculuselectromagnetic scatteringradar reflectionsELECTROMAGNETIC METHODmeteoritbusinessJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct