Search results for "Metric geometry"

showing 10 items of 222 documents

Products of snowflaked Euclidean lines are not minimal for looking down

2017

We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance $d$ such that the product of snowflaked Euclidean lines looks down on $(\mathbb R^N,d)$, but not vice versa.

Ahlfors-regularity26B05 (Primary) 28A80 (Secondary)01 natural sciences010104 statistics & probabilityFractalMathematics - Metric GeometryEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryBPI-spacesbpi-spacessecondary 28a800101 mathematicsbilipschitz piecesMathematicsDiscrete mathematicsQA299.6-433ahlfors-regularityApplied Mathematics010102 general mathematicsprimary 26b05Metric Geometry (math.MG)biLipschitz piecesMathematics - Classical Analysis and ODEsProduct (mathematics)Geometry and TopologyAnalysis
researchProduct

Faithful representations of left C*-modules

2010

The existence of a faithful modular representation of a left module $$ \mathfrak{X} $$ over a C*-algebra $$ \mathfrak{A}_\# $$ possessing sufficiently many traces is proved.

AlgebraRepresentations C*-modulesPure mathematicsSettore MAT/05 - Analisi Matematicabusiness.industryGeneral MathematicsMathematics::Metric GeometryModular designAlgebra over a fieldMathematics::Representation TheorybusinessRepresentation (mathematics)MathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions

2014

Abstract Let ( X , d , μ ) be a complete, locally doubling metric measure space that supports a local weak L 2 -Poincare inequality. We show that optimal gradient estimates for Cheeger-harmonic functions imply local isoperimetric inequalities.

Applied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysista111Poincaré inequalityIsoperimetric dimensionSpace (mathematics)Lipschitz continuity01 natural sciencesMeasure (mathematics)symbols.namesakeHarmonic function0103 physical sciencesMetric (mathematics)symbolsMathematics::Metric Geometry010307 mathematical physics0101 mathematicsIsoperimetric inequalityMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

A note on topological dimension, Hausdorff measure, and rectifiability

2020

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.

Applied MathematicsGeneral Mathematics010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMetric spacesymbols.namesakeCompact spaceMathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsHausdorff measuremittateoria010307 mathematical physics0101 mathematicsLebesgue covering dimensionMathematicsProceedings of the American Mathematical Society
researchProduct

Singular integrals on regular curves in the Heisenberg group

2019

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

Applied MathematicsGeneral Mathematics42B20 (primary) 43A80 28A75 35R03 (secondary)Metric Geometry (math.MG)Singular integralLipschitz continuityuniform rectifiabilityHeisenberg groupFunctional Analysis (math.FA)ConvolutionBounded operatorMathematics - Functional AnalysisCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupsingular integralsBoundary value problemKernel (category theory)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Quasisymmetric structures on surfaces

2009

We show that a locally Ahlfors 2-regular and locally linearly locally contractible metric surtace is locally quasisymmetrically equivalent to tne disk. We also discuss an application of this result to the problem of characterizing surfaces embedded in some Euclidean spaces that are locally bi-Lipschitz equivalent to a ball in the plane.

Applied MathematicsGeneral MathematicsEuclidean geometryMathematical analysisMathematics::Metric GeometryBall (mathematics)Contractible spaceMathematicsTransactions of the American Mathematical Society
researchProduct

Quasisymmetric spheres over Jordan domains

2015

Let $\Omega$ be a planar Jordan domain. We consider double-dome-like surfaces $\Sigma$ defined by graphs of functions of $dist( \cdot ,\partial \Omega)$ over $\Omega$. The goal is to find the right conditions on the geometry of the base $\Omega$ and the growth of the height so that $\Sigma$ is a quasisphere, or quasisymmetric to $\mathbb{S}^2$. An internal uniform chord-arc condition on the constant distance sets to $\partial \Omega$, coupled with a mild growth condition on the height, gives a close-to-sharp answer. Our method also produces new examples of quasispheres in $\mathbb{R}^n$, for any $n\ge 3$.

Applied MathematicsGeneral MathematicsGraph of a functionMetric Geometry (math.MG)16. Peace & justiceOmegaCombinatoricsBase (group theory)Mathematics - Metric GeometryDomain (ring theory)FOS: MathematicsSPHERESConstant (mathematics)Mathematics
researchProduct

Visible parts and dimensions

2003

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…

Applied MathematicsMathematical analysisMinkowski–Bouligand dimensionMathematics::General TopologyGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsUrysohn and completely Hausdorff spacesEffective dimensionCombinatoricsPacking dimensionHausdorff distanceHausdorff dimensionMathematics::Metric GeometryHausdorff measureMathematical PhysicsMathematicsNonlinearity
researchProduct

Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces

2021

We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure. peerReviewed

CAT spacesSettore MAT/05 - Analisi MatematicaSobolev spacesmetric geometrygeometriaMetric geometrymetriset avaruudet
researchProduct

Space of signatures as inverse limits of Carnot groups

2021

We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.…

Carnot groupsignature of pathsryhmäteoriametric treeinverse limitsub-Riemannian distancedifferentiaaligeometria510 Mathematicspath lifting propertysubmetryMathematics::Metric GeometryMathematics::Differential Geometrymittateoriafree nilpotent groupstokastiset prosessit
researchProduct