Search results for "Mild"

showing 10 items of 193 documents

Changes in carbohydrate metabolism in Plasmopara viticola-infected grapevine leaves.

2011

International audience; The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activit…

0106 biological sciencesChlorophyllPhysiologyStarchenzymatic activityhexosesbeta-AmylaseplantGlucose-1-Phosphate Adenylyltransferasetranscriptomic analyse01 natural sciencesinvertasechemistry.chemical_compoundphytopathogenGene Expression Regulation PlantVitisTrehalaseOligonucleotide Array Sequence Analysis0303 health sciencesbiologyfood and beveragesStarchGeneral MedicineEnzymesBiochemistryOomycetesRNA PlantPlasmopara viticolaCarbohydrate metabolism03 medical and health sciencesPlasmopara viticolaADP-glucose pyrophosphorylasePolysaccharidesVignecarbohydrate metabolism[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologytrehalose030304 developmental biologyPlant Diseasesphotosynthesisbiology.organism_classificationtrehalaseTrehaloseEnzyme assayPlant LeavesInvertasechemistryVitis viniferabiology.proteinDowny mildewfungialpha-AmylasesphysiopathologyAgronomy and Crop Science010606 plant biology & botany
researchProduct

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

2020

[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…

0106 biological sciencesEnvironmental EngineeringBioengineeringMild/warmer climateWastewater010501 environmental sciencesWaste Disposal Fluid01 natural scienceschemistry.chemical_compoundBioreactors010608 biotechnologyBioreactorUrban wastewater (UWW)AnaerobiosisSulfateWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesRenewable Energy Sustainability and the EnvironmentAnaerobic membrane bioreactor (AnMBR)Membrane foulingMembranes ArtificialGeneral MedicineBiodegradationPulp and paper industryMethane productionIndustrial-scale membraneMembraneWastewaterchemistryEnvironmental scienceMethaneAnaerobic exerciseDemonstration plant
researchProduct

Are grapevine stomata involved in the elicitor-induced protection against downy mildew?

2009

Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H2O2 production, that allows the activation of defense genes, leading to defense reactions. Similar signaling events occur in guard cells in response to the perception of abscisic acid (ABA), leading to stomatal closure. Moreover, few elicitors were reported to induce stomatal closure in Arabidopsis and Vicia faba leaves. Because responses to ABA…

0106 biological sciencesLightPhysiologychampignon phytopathogènestomate01 natural sciencesréaction de défense03 medical and health sciencesPathosystemchemistry.chemical_compoundvitis viniferaArabidopsisGuard cellBotanyVitis[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMERELATION PLANTE-MICROORGANISME;RELATION HOTE-PARASITEAbscisic acid030304 developmental biologyTranspirationRELATION HOTE-PARASITE0303 health sciencesbiologyéliciteurfungifood and beveragesGeneral MedicineHydrogen Peroxidebiology.organism_classificationImmunity InnateElicitorPlant LeaveschemistryOomycetesmildiouPlasmopara viticolaPlant StomataDowny mildewvigneReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyAbscisic Acid
researchProduct

Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of re…

2013

article i nfo The grapevine downy mildew (Plasmopara viticola) provokes severe damages and destroys the harvest in the absence of an effective protection. Numerous fungicide treatments are thus generally necessary. To promote a sustainable production, alternative strategies of protection including new antifungal molecules, resistant geno- types or elicitor-induced resistance are under trial. To evaluate the relevance of these strategies, resistance tests are required. In this context, three image analysis methods were developed to read the results of tests performed to assessP.viticolasporulation and mycelial development, and H 2 O 2 production in leaves. They have been validated using elic…

0106 biological sciencesMicrobiology (medical)Antifungalmedicine.drug_class[SDV]Life Sciences [q-bio]H2O2Context (language use)01 natural sciencesMicrobiologyImage analysis03 medical and health sciencesPlasmopara viticolamedicinePlant defense against herbivoryImage Processing Computer-Assisted[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVitisimage analysis;Plasmopara viticola;downy mildew;grapevine;H2O2;resistance testsMolecular Biology[ SDV.MP.MYC ] Life Sciences [q-bio]/Microbiology and Parasitology/MycologyAnalysis method[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology030304 developmental biologyDisease ResistancePlant Diseases2. Zero hunger0303 health sciencesResistance (ecology)biologyResistance testsReproducibility of Resultsfood and beveragesHydrogen Peroxidebiology.organism_classificationFungicidePlant LeavesHorticultureAgronomyOomycetesPlasmopara viticola[SDE]Environmental SciencesDowny mildewGrapevine010606 plant biology & botanyDowny mildew
researchProduct

Stomatal deregulation in Plasmopara viticola-infected grapevine leaves.

2007

International audience; In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. • Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. • In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpir…

0106 biological sciencesStomatal conductancePLASMOPARA VITICOLAPhysiologySTOMATAL CONDUCTANCEPlant ScienceBiology01 natural sciencesPlant Epidermis03 medical and health scienceschemistry.chemical_compoundABSCISIC ACID (ABA)Guard cellBotanyVitisDOWNY MILDEWAbscisic acid030304 developmental biologyTranspirationOomycete0303 health sciencesfungifood and beveragesWaterbiology.organism_classification[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacySporePlant LeaveschemistryOomycetesGRAPEVINE (VITIS VINIFERA)Plasmopara viticolaGUARD CELLSDowny mildew010606 plant biology & botanyAbscisic AcidThe New phytologistReferences
researchProduct

Influence of leaf age on induced resistance in grapevine against Plasmopara viticola

2012

International audience; Sulfated laminarin (PS3) has previously been shown to induce resistance of grapevine leaves against the oomycete Plasmopara viticola, the causal agent of grape downy mildew. Here, we observed that the level of PS3-induced resistance (PS3-IR) was higher in the adult leaf (in position P3) than in the younger, not fully expanded leaf (in position P1, located above P3). By investigating grapevine defense reactions upon PS3 treatment and inoculation, we found that the production of H2O2, of phytoalexins, and the deposition of phenolics were more abundant in P3 than in P1 leaves. In addition, PS3 significantly reduced stomatal colonization by zoospores only in P3 leaves. T…

0106 biological sciencesZoospore[SDV]Life Sciences [q-bio]Plant ScienceAge-related resistance01 natural sciencesinduced resistance03 medical and health sciencesLaminarinchemistry.chemical_compoundvitis viniferaBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyColonizationpriming030304 developmental biologyOomycete0303 health sciencesage-related resistancebiologyInoculationfood and beveragesbiology.organism_classificationchemistryPlasmopara viticola[SDE]Environmental SciencesDowny mildewplant developmentplasmopara viticola010606 plant biology & botany
researchProduct

Climate vs grapevine pests and diseases worldwide: The first results of a global survey

2016

<p class="Abstract"><strong>Aim:</strong> This paper aimed to address the relationship between grapevine disease, pest occurrences and climate. The extremely large extension of viticulture worldwide offers the possibility to evaluate the impacts of climate variability on many aspects of the grape growing system. For this, we initiated a global survey to retrieve the most important diseases and pests in many grape growing regions worldwide and to identify the risk of exposure to pests and diseases of viticulture as a function of climate.</p><p class="Abstract"><strong>Methods and results:</strong> Based on the answer of respondent about the main repo…

0106 biological sciences[SDV]Life Sciences [q-bio][SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyravageurGrowing seasonDistribution (economics)Climate changeDiseasesDiseaseHorticulture01 natural scienceslcsh:Agriculturevitis vinifera[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomylcsh:BotanyComputingMilieux_MISCELLANEOUSPhytosanitary certification2. Zero hungerchangement climatiqueEcologybusiness.industryAgroforestrylcsh:Sfood and beverages04 agricultural and veterinary sciences15. Life on landviticulturediseases;pests;viticulture;climate change;grapevinegrapevinelcsh:QK1-989[SDV] Life Sciences [q-bio]Geographyclimate change[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology13. Climate action[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriesPEST analysis[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/ClimatologyViticulturevignebusinesspestsPowdery mildew010606 plant biology & botanyFood Science
researchProduct

Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola

2014

International audience; Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to th…

0106 biological sciencesphytoalexins[SDV]Life Sciences [q-bio]Plant ScienceresveratrolResveratrol01 natural sciencesimmune responseinduced resistanceTranscriptomechemistry.chemical_compoundimmunité induiteSoybean hydrolysateOriginal Research ArticlePathogen2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyPhytoalexinfood and beveragesCasein hydrolysatePlasmopara viticola[SDE]Environmental Sciencesplant immunityrésistance induitelcsh:Plant cultureSoybean hydrolysate; Casein hydrolysate; immune response; grapevine; Plasmopara viticolaHydrolysateMicrobiologyéliciteur de résistance03 medical and health sciencesPlasmopara viticolaImmunityprotein hydrolysatesBotanymildiou de la vigne[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyhydrolysat de protéineprotéine prlcsh:SB1-1110030304 developmental biologyprotein hydrolysates;Plasmopara viticola;Vitis vinifera;induced resistance;plant immunity;phytoalexinsextrait de sojagène de défensehydrolysat de caséinebiology.organism_classificationgrapevinechemistryVitis viniferaDowny mildew010606 plant biology & botany
researchProduct

Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms

2020

Author(s): Christopher, Mark; Nakahara, Kenichi; Bowd, Christopher; Proudfoot, James A; Belghith, Akram; Goldbaum, Michael H; Rezapour, Jasmin; Weinreb, Robert N; Fazio, Massimo A; Girkin, Christopher A; Liebmann, Jeffrey M; De Moraes, Gustavo; Murata, Hiroshi; Tokumo, Kana; Shibata, Naoto; Fujino, Yuri; Matsuura, Masato; Kiuchi, Yoshiaki; Tanito, Masaki; Asaoka, Ryo; Zangwill, Linda M | Abstract: PurposeTo compare performance of independently developed deep learning algorithms for detecting glaucoma from fundus photographs and to evaluate strategies for incorporating new data into models.MethodsTwo fundus photograph datasets from the Diagnostic Innovations in Glaucoma Study/African Descent…

0301 basic medicineAginggenetic structuresFundus OculiAfrican descentPopulationBiomedical EngineeringGlaucomaPrimary careNeurodegenerativeoptic disc03 medical and health sciences0302 clinical medicineDeep LearningOpthalmology and OptometryArtificial IntelligencemedicineHumanseducationMild diseaseeducation.field_of_studyReceiver operating characteristicbusiness.industrySpecial IssueDeep learningimagingartificial intelligencemedicine.diseaseeye diseasesOphthalmology030104 developmental biologyglaucomamachine learning030221 ophthalmology & optometryPopulation studyArtificial intelligencebusinessPsychologyAlgorithmAlgorithmsTranslational Vision Science & Technology
researchProduct

Differential Associations of IL-4 With Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer’s Disease

2019

Background/Aims: A bi-directional communication between the immune system and the central nervous system has been recently suggested. Among many cytokines, the role of IL-4 - with anti-inflammatory properties- in counteracting age-related inflammatory changes in the brain is strongly supported among studies. With this study, we aimed at investigating the association between volumetric measures of hippocampal subregions -in healthy older controls (HC), subjects affected by mild cognitive impairment (MCI) and Alzheimer’s Disease (AD)- with circulating levels of IL-4. Methods: From AddNeuroMed Project 113 HC, 101 stable MCI (sMCI), 22 converter MCI (cMCI) and 119 AD were included. Hippocampal …

0301 basic medicineAgingmedicine.medical_specialtyCognitive NeuroscienceCentral nervous systemHippocampusInflammationDiseaseHippocampal formationNeuroprotectionAlzheimer’s disease; aging; inflammation; inflammatory markers; mild cognitive impairmentlcsh:RC321-57103 medical and health sciencesmild cognitive impairment0302 clinical medicineInternal medicinemedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchbusiness.industryNeurodegenerationinflammatory markersmedicine.disease030104 developmental biologyEndocrinologymedicine.anatomical_structureinflammationAgeingmedicine.symptombusinessAlzheimer’s disease030217 neurology & neurosurgeryNeuroscienceFrontiers in Aging Neuroscience
researchProduct