Search results for "Mitochondrial Dynamics"

showing 8 items of 18 documents

MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming

2018

Summary Cell reprogramming is thought to be associated with a full metabolic switch from an oxidative- to a glycolytic-based metabolism. However, neither the dynamics nor the factors controlling this metabolic switch are fully understood. By using cellular, biochemical, protein array, metabolomic, and respirometry analyses, we found that c-MYC establishes a robust bivalent energetics program early in cell reprogramming. Cells prone to undergo reprogramming exhibit high mitochondrial membrane potential and display a hybrid metabolism. We conclude that MYC proteins orchestrate a rewiring of somatic cell metabolism early in cell reprogramming, whereby somatic cells acquire the phenotypic plast…

0301 basic medicineCell signalingSomatic cellCèl·lulesCellOxidative phosphorylationcell reprogramming cell signaling metabolism mitochondrial dynamicsBiologyHybrid CellsBiochemistryMitochondrial DynamicsArticleOxidative PhosphorylationMitocondrisProto-Oncogene Proteins c-myc03 medical and health sciencesMetabolomicsCDC2 Protein KinaseGeneticsmedicinecell signalingAnimalsHumansGlycolysisPhosphorylationlcsh:QH301-705.5Membrane potentialMembrane Potential Mitochondriallcsh:R5-920cell reprogrammingCell BiologyCellular ReprogrammingCell biologyMitochondriaMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:Medicine (General)ReprogrammingmetabolismGlycolysisDevelopmental Biology
researchProduct

Cell expression of GDAP1 in the nervous system and pathogenesis of Charcot-Marie-Tooth type 4A disease

2007

Abstract Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate pheno-types. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neu…

Nervous systemCMT4A mutations and pathogenesisPathologymedicine.medical_specialtyperipheral neuropathyCharcot-Marie-Tooth type 4A diseaseMutation MissenseGene ExpressionImages in Cellular / Molecular MedicineNerve Tissue ProteinsGDAP1MitochondrionBiologymedicine.disease_causeNervous SystemPathogenesisMicePurkinje CellsCharcot-Marie-Tooth DiseaseInterneuronsGanglia SpinalChlorocebus aethiopsmedicineAnimalsHumansNeurons AfferentCells CulturedMotor NeuronsMutationfusion and fission pathwayPyramidal CellsCell Biologymedicine.diseaseSpinal cordImmunohistochemistrymitochondrial dynamicsCell biologyOlfactory bulbRatsmedicine.anatomical_structurePeripheral neuropathynervous systemAnimals NewbornSpinal CordCOS CellsMolecular MedicineNeuronHeLa CellsJournal of Cellular and Molecular Medicine
researchProduct

Inflammation-Induced Alteration of Astrocyte Mitochondrial Dynamics Requires Autophagy for Mitochondrial Network Maintenance

2013

Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect w…

MaleLipopolysaccharidesPhysiologyDnm1l protein mouseInterleukin-1betaNitric Oxide Synthase Type IIMitochondrionAstrocytes/metabolismMitochondrial DynamicsAutophagy-Related Protein 7Mice0302 clinical medicinemetabolism [Reactive Oxygen Species]PhosphorylationCells Culturedcytology [Astrocytes]0303 health sciencesmetabolism [Inflammation]metabolism [Astrocytes]Inflammation/metabolismCytokines/metabolismdrug effects [Mitochondria]Mitochondria/drug effectsMitochondriaCell biologyAstrocytes/drug effectsmedicine.anatomical_structureMicrotubule-Associated Proteins/metabolismPhosphorylationCytokinesmetabolism [Dynamins]Nitric Oxide Synthase Type II/metabolismMicrotubule-Associated ProteinsAstrocytegenetics [Microtubule-Associated Proteins]DynaminsProgrammed cell deathAstrocytes/cytologydrug effects [Astrocytes]Mice TransgenicBiologypharmacology [Interferon-gamma]Proinflammatory cytokine03 medical and health sciencesInterferon-gammametabolism [Interleukin-1beta]reactive astrocytesReactive Oxygen Species/metabolismddc:570Mitochondria/metabolismtoxicity [Lipopolysaccharides]medicineAutophagyAnimalsAutophagy-Related Protein 7Molecular BiologyNeuroinflammation030304 developmental biologypathology [Inflammation]Dynamins/metabolismInflammationdrug effects [Mitochondrial Dynamics]Autophagymetabolism [Cytokines]Interferon-gamma/pharmacologyCell Biologymetabolism [Microtubule-Associated Proteins]Microtubule-Associated Proteins/geneticsMitochondrial Dynamics/drug effectsmetabolism [Mitochondria]metabolism [Nitric Oxide Synthase Type II]Mice Inbred C57BLLipopolysaccharides/toxicityAtg7 protein mouseAstrocytesInterleukin-1beta/metabolismReactive Oxygen Species030217 neurology & neurosurgeryInflammation/pathologyCell Metabolism
researchProduct

Roles for ELMOD2 and Rootletin in ciliogenesis.

2021

AbstractELMOD2 is a GTPase activating protein (GAP) with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the fin…

GTPase-activating proteinBiologyMicrotubulesMitochondrial DynamicsCell Line03 medical and health sciencesMice0302 clinical medicineMicrotubuleGTP-Binding ProteinsCiliogenesisAnimalsHumansCiliaMolecular Biology030304 developmental biologyCytokinesisCentrosome0303 health sciencesADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCell BiologyArticlesFibroblastsCell biologyMitochondriaCytoskeletal Proteinsmitochondrial fusionCentrosomeCentrinRootletin030217 neurology & neurosurgeryCytokinesisSignal TransductionMolecular biology of the cell
researchProduct

Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming

2018

Summary Mitochondria are key players in the regulation of T cell biology by dynamically responding to cell needs, but how these dynamics integrate in T cells is still poorly understood. We show here that the mitochondrial pro-fission protein Drp1 fosters migration and expansion of developing thymocytes both in vitro and in vivo. In addition, we find that Drp1 sustains in vitro clonal expansion and cMyc-dependent metabolic reprogramming upon activation, also regulating effector T cell numbers in vivo. Migration and extravasation defects are also exhibited in Drp1-deficient mature T cells, unveiling its crucial role in controlling both T cell recirculation in secondary lymphoid organs and acc…

Genetics and Molecular Biology (all)0301 basic medicinecell migrationT-LymphocytesCellCell CountMitochondrionLymphocyte ActivationBiochemistryCell MovementHomeostasismetabolic reprogrammingcell migration; cell proliferation; cMyc; Drp1; exhaustion; metabolic reprogramming; mitochondrial dynamics; T cells; thymocytes; tumor immune-surveillance; Biochemistry Genetics and Molecular Biology (all)lcsh:QH301-705.5cMycImmunologic SurveillanceMice KnockoutThymocytesEffectorDrp1; T cells; cMyc; cell migration; cell proliferation; exhaustion; metabolic reprogramming; mitochondrial dynamics; thymocytes; tumor immune-surveillanceCell migrationCell DifferentiationCell biologymedicine.anatomical_structurePhenotypeDynaminsendocrine systemSettore BIO/06Cell SurvivalLymphoid TissueMAP Kinase Signaling SystemT cellT cellsReceptors Antigen T-CellDrp1BiologyGeneral Biochemistry Genetics and Molecular BiologyArticleProto-Oncogene Proteins c-myc03 medical and health sciencestumor immune-surveillancemitochondrial dynamicexhaustionHomeostasimedicineAnimalsCell ProliferationTumor microenvironmentBiochemistry Genetics and Molecular Biology (all)Cell growthAnimalT cellthymocytemitochondrial dynamicsDynamin030104 developmental biologylcsh:Biology (General)T-LymphocyteT cell migration
researchProduct

Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo.

2018

Mitochondrial dysfunction plays an important role in the etiology of age-related muscle atrophy known as sarcopenia. PGC-1α is positioned at the center of crosstalk in regulating mitochondrial quality control, but its role in mitophagy in aged skeletal muscle is currently unclear. The present study investigated the effects of aging and PGC-1α overexpression via in vivo DNA transfection on key mitophagy protein markers, as well as mitochondrial dynamics related proteins, metabolic function and antioxidant capacity in mouse muscle. C57BL/6J mice at the age of 2 mo (young, Y; N = 14) and 24 mo (old, O; N = 14) were transfected in vivo with either PGC-1α DNA (OE, N = 7) or GFP (N = 7) into the …

0301 basic medicineAgingUbiquitin-Protein LigasesPINK1MitochondrionBiochemistryMitochondrial DynamicsGTP Phosphohydrolases03 medical and health sciencesMice0302 clinical medicineIn vivoPhysiology (medical)MitophagymedicineAnimalsMuscle SkeletalChemistryMitophagySkeletal muscleTransfectionmedicine.diseasePeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMuscle atrophyCell biologyMitochondriaOxidative Stress030104 developmental biologymedicine.anatomical_structureGene Expression RegulationSarcopeniaBeclin-1medicine.symptomProtein Kinases030217 neurology & neurosurgeryFree radical biologymedicine
researchProduct

Hypothalamic glucose sensing : mitochondrial dynamic involument in reactive oxygen species signaling

2011

Energetic homeostasis results in the balance between energy intake and expenditure. The hypothalamus plays an important role in the regulation of both energetic metabolism and food intake in sensing hormonal and metabolic signals. For instance, changes in hypothalamic glucose level modulate food intake and insulin secretion. We have previously found that 1) increased hypothalamic glucose level triggers production of mitochondrial reactive oxygen species (mROS) from the electron transport chain; 2) hypothalamic mROS production is involved in glucose homeostasis and food intake control. The molecular mechanisms involved in glucose-induced hypothalamic mROS production are still unknown. Mitoch…

Energetic homeostasis[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyHypothalamusGlucose sensingMitochondrial dynamicsEspèces Actives de l’Oxygène mitochondriales (mEAOs)Homéostasie énergétiqueDétection du glucoseDynamique mitochondrialeReactive Oxygen Species (mROS)
researchProduct

The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic

2022

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators a…

Cell divisionGTPase-activating proteinGolgi ApparatusGTPaseBiologyMicrotubulesMitochondrial Dynamicssymbols.namesakeMiceMicrotubuleCiliogenesisAnimalsCiliaMolecular BiologyADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCorrectionCell BiologyGolgi apparatusFibroblastsCell biologyCytoskeletal Proteinsmitochondrial fusionsymbolsSignal Transduction
researchProduct